若關于的方程的三個根可分別作為一個橢圓、雙曲線、拋物線的離心率,則的取值范圍為         . 

試題分析:令f(x)=x3+ax2+bx+c
∵拋物線的離心率為1,∴1是方程f(x)=x3+ax2+bx+c=0的一個實根
∴a+b+c=-1
∴c=-1-a-b代入f(x)=x3+ax2+bx+c,
可得f(x)=x3+ax2+bx-1-a-b=(x-1)(x2+x+1)+a(x+1)(x-1)+b(x-1)=(x-1)[x2+(a+1)x+1+a+b]
設g(x)=x2+(a+1)x+1+a+b,則g(x)=0的兩根滿足0<x1<1,x2>1
∴g(0)=1+a+b>0,g(1)=3+2a+b<0
作出可行域,如圖所示

的幾何意義是區(qū)域內的點與原點連線的斜率,
∴-2≤<-故答案為:-2≤<-
點評:解題的關鍵是根據(jù)條件來寫出不等式組,然后結合規(guī)劃知識來得到。涉及到了函數(shù)的根的分布,多項式恒等等知識.屬中檔題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

兩圓的位置關系是
A.內切B.相交C.外切D.外離

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

從雙曲線的左焦點F引圓的切線FP交雙曲線右支于點P,T為切點,M為線段FP的中點,O為坐標原點,則| MO | – | MT | =        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知點,,△的周長為6.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設過點的直線與曲線相交于不同的兩點.若點軸上,且,求點的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設雙曲線的方程為,、為其左、右兩個頂點,是雙曲線 上的任意一點,作,,垂足分別為、,交于點.
(1)求點的軌跡方程;
(2)設的離心率分別為、,當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,F(xiàn)1,F(xiàn)2是雙曲線C:(a>0,b>0)的左、右焦點,過F1的直線的左、右兩支分別交于A,B兩點.若 | AB | : | BF2 | : | AF2 |=3:4 : 5,則雙曲線的離心率為
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知a,b為正常數(shù),F(xiàn)1,F(xiàn)2是兩個定點,且|F1F2|=2a(a是正常數(shù)),動點P滿足|PF1|+|PF2|=a2+1,則動點P的軌跡是(     )
A.橢圓B.線段C.橢圓或線段D.直線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的一條漸近線與直線垂直,則曲線的離心率等于             。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的焦點為F,準線為l,點P為拋物線上一點,且,垂足為A,若直線AF的斜率為,則|PF|等于( )
A.B.4C.D.8

查看答案和解析>>

同步練習冊答案