如圖所示,已知多面體PABCD的直觀圖(圖1)和它的三視圖(圖2),
(I)在棱PA上是否存在點E,使得PC∥平面EBD?若存在,求PE:PA的值,并證明你的結(jié)論;若不存在,說明理由;
(II)求二面角B-PC-D的大。ㄈ舨皇翘厥饨钦堄梅慈呛瘮(shù)表示)
【答案】分析:(I)以A為原點,AB,AD,AP分別為x軸,y軸,z軸建立坐標系A(chǔ)-xyz.設(shè)E(0,0,a),為平面EBD的法向量,
利用求出,利用求出a,在棱PA上存在點E,使得PC∥平面EBD.求出PE:PA的值.
(II)設(shè)分別為平面BPC和平面DPC的法向量,求出法向量,
利用求二面角B-PC-D的大。ㄈ舨皇翘厥饨钦堄梅慈呛瘮(shù)表示)
解答:解:由三視圖可知,多面體是四棱錐P-ABCD,底面ABCD是直角梯形,側(cè)棱PA⊥平面ABCD.且PA=2,AB=BC=1,AD=2.(1分)
如圖以A為原點,AB,AD,AP分別為x軸,y軸,z軸建立坐標系A(chǔ)-xyz.
由三視圖可知,B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(3分)
設(shè)E(0,0,a),為平面EBD的法向量,
,
,得
令y=1,則.(4分)
,且

∴a=..(5分)
∴在棱PA上存在點E,使得PC∥平面EBD,
此時PE:PA=1:3..(6分)
(Ⅱ)設(shè)分別為平面BPC和平面DPC的法向量,
,
則由,得,
令z1=1,則.(9分)
同理
.(11分)
由圖可知二面角B-PC-D為鈍二面角,
∴二面角B-PC-D的大小為.(12分)
點評:本題考查直線與平面平行的判定,二面角及其度量,考查轉(zhuǎn)化思想,計算能力,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖所示,已知多面體P-ABCD的直觀圖(圖1)和它的三視圖(圖2),
精英家教網(wǎng)
(Ⅰ)在棱PA上是否存在點E,使得PC∥平面EBD?若存在,求PE:PA的值,并證明你的結(jié)論;若不存在,說明理由;
(Ⅱ)求二面角B-PC-D的大小.(若不是特殊角請用反三角函數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知多面體PABCD的直觀圖(圖1)和它的三視圖(圖2),
(I)在棱PA上是否存在點E,使得PC∥平面EBD?若存在,求PE:PA的值,并證明你的結(jié)論;若不存在,說明理由;
(II)求二面角B-PC-D的大。ㄈ舨皇翘厥饨钦堄梅慈呛瘮(shù)表示)

查看答案和解析>>

科目:高中數(shù)學 來源:2010年遼寧省沈陽市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖所示,已知多面體PABCD的直觀圖(圖1)和它的三視圖(圖2),
(I)在棱PA上是否存在點E,使得PC∥平面EBD?若存在,求PE:PA的值,并證明你的結(jié)論;若不存在,說明理由;
(II)求二面角B-PC-D的大。ㄈ舨皇翘厥饨钦堄梅慈呛瘮(shù)表示)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學單元檢測:立體幾何(幾何證明選講)(解析版) 題型:解答題

如圖所示,已知多面體PABCD的直觀圖(圖1)和它的三視圖(圖2),
(I)在棱PA上是否存在點E,使得PC∥平面EBD?若存在,求PE:PA的值,并證明你的結(jié)論;若不存在,說明理由;
(II)求二面角B-PC-D的大。ㄈ舨皇翘厥饨钦堄梅慈呛瘮(shù)表示)

查看答案和解析>>

同步練習冊答案