已知函數(shù)f(x)的導(dǎo)函數(shù)為f ′(x),且對(duì)任意x>0,都有f ′(x)>.
(Ⅰ)判斷函數(shù)F(x)=在(0,+∞)上的單調(diào)性;
(Ⅱ)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)請(qǐng)將(Ⅱ)中的結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.
(Ⅰ)F(x)=在(0,+∞)上是增函數(shù);(Ⅱ)f(x1)+f(x2)<f(x1+x2);(Ⅲ)f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).
【解析】
試題分析:(Ⅰ)判斷F(x)的單調(diào)性,則需對(duì)F(x)求導(dǎo),得F′(x)=,∵f ′(x)>,x>0,則xf ′(x)-f(x)>0,即F′(x)>0,F(xiàn)(x)=在(0,+∞)上是增函數(shù).(Ⅱ)要證明f(x1)+f(x2)<f(x1+x2),可以從第(Ⅰ)的結(jié)論入手,∵x1>0,x2>0,∴0<x1<x1+x2,F(xiàn)(x)=在(0,+∞)上是增函數(shù),則F(x1)<F(x1+x2),即<,而x1>0,所以f(x1)<f(x1+x2),同理f(x2)<f(x1+x2),兩式相加,得f(x1)+f(x2)<f(x1+x2),得證.(Ⅲ)(Ⅱ)中結(jié)論的推廣形式為:設(shè)x1,x2,…,xn∈(0,+∞),其中n≥2,則f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).證明的方法同(Ⅱ)的證明,∵x1>0,x2>0,…,xn>0,∴0<x1<x1+x2+…+xn.F(x)=在(0,+∞)上是增函數(shù),F(xiàn)(x1)<F(x1+x2+…+xn),即<,而x1>0,所以f(x1)<f(x1+x2+…+xn),同理f(x2)<f(x1+x2+…+xn),……
f(xn)<f(x1+x2+…+xn),以上n個(gè)不等式相加,得f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn),得證.
試題解析:(Ⅰ)對(duì)F(x)求導(dǎo)數(shù),得F′(x)=.
∵f ′(x)>,x>0,∴xf ′(x)>f(x),即xf ′(x)-f(x)>0,
∴F′(x)>0.
故F(x)=在(0,+∞)上是增函數(shù).
(Ⅱ)∵x1>0,x2>0,∴0<x1<x1+x2.
由(Ⅰ),知F(x)=在(0,+∞)上是增函數(shù),
∴F(x1)<F(x1+x2),即<.
∵x1>0,∴f(x1)<f(x1+x2).
同理可得f(x2)<f(x1+x2).
以上兩式相加,得f(x1)+f(x2)<f(x1+x2).
(Ⅲ)(Ⅱ)中結(jié)論的推廣形式為:
設(shè)x1,x2,…,xn∈(0,+∞),其中n≥2,則f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).
∵x1>0,x2>0,…,xn>0,
∴0<x1<x1+x2+…+xn.
由(Ⅰ),知F(x)=在(0,+∞)上是增函數(shù),
∴F(x1)<F(x1+x2+…+xn),即<.
∵x1>0,
∴f(x1)<f(x1+x2+…+xn).
同理可得
f(x2)<f(x1+x2+…+xn),
f(x3)<f(x1+x2+…+xn),
……
f(xn)<f(x1+x2+…+xn).
以上n個(gè)不等式相加,得f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).
考點(diǎn):1.利用導(dǎo)數(shù)求單調(diào)性;2.利用函數(shù)單調(diào)性證明不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014屆安徽省高二下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)f (x)的導(dǎo)函數(shù)的圖象如圖所示,那么函數(shù)f (x)的圖象最有可能的是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南省南陽(yáng)市高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)f(x)的導(dǎo)函數(shù)為,且滿(mǎn)足f(x)=2x+ln x,則= ( )
A.-e B.-1 C.1 D.e
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省、鐘祥一中高三第二次聯(lián)考數(shù)學(xué)理卷 題型:填空題
已知函數(shù)f (x) 的導(dǎo)數(shù)f′(x)=a(x+1)(x-a),若f (x)在x=a處取得極大值,則a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年高三年級(jí)秦皇島市三區(qū)四縣聯(lián)考文科試題 題型:選擇題
(文)已知函數(shù)f(x)的導(dǎo)數(shù)為f′(x),若f′(x)<0(a <x <b)且f(b)>0,則在(a,b)內(nèi)必有( )
A.f(x)=0 |
B.f(x)>0 |
C.f(x)<0 |
D.不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年河南省駐馬店確山二高高二上學(xué)期期中考試文科數(shù)學(xué) 題型:選擇題
已知函數(shù)f(x)的導(dǎo)函數(shù)的圖像如左圖所示,那么函數(shù)f(x)的圖像最有可能的
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com