已知函數(shù)f(x)=
1
4x+2
,若函數(shù)y=f(x+m)-
1
4
為奇函數(shù),則實數(shù)m=
 
考點:函數(shù)奇偶性的性質
專題:函數(shù)的性質及應用
分析:根據(jù)條件求出函數(shù)的解析式,根據(jù)定義在R上的奇函數(shù),函數(shù)圖象必過原點,構造方程解方程可得m的值.
解答: 解:把f(x)=
1
4x+2
代入y=f(x+m)-
1
4
得,y=
1
4x+m+2
-
1
4
,
∵函數(shù)y=f(x+m)-
1
4
為R上的奇函數(shù),
1
40+m+2
-
1
4
=0,即4m+2=4,
∴4m=2,解得m=
1
2

故答案為:
1
2
點評:本題考查函數(shù)奇偶性的應用以及指數(shù)方程的求解,根據(jù)g(x)為奇函數(shù)的結論:g(0)=0,建立方程關系是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

現(xiàn)代人普遍認為拓展訓練是一種挑戰(zhàn)極限、完善人格的訓練.某大學生拓展訓練中心著眼于大學生的實際情況,精心地設計了三個相互獨立的挑戰(zhàn)極限項目,并設置如下計分辦法:
項目
挑戰(zhàn)成功得分103060
挑戰(zhàn)失敗得分000
據(jù)調查,大學生挑戰(zhàn)甲項目的成功概率為
4
5
,挑戰(zhàn)乙項目的成功概率為
3
4
,挑戰(zhàn)丙項目的成功概率為
1
2

(Ⅰ)求某同學三個項目全部挑戰(zhàn)成功的概率;
(Ⅱ)記該同學挑戰(zhàn)三個項目后所得分數(shù)為X,求X的分布列并求EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x+3,g(x)=3x-k(k∈R).
(1)如果f(g(x))=g(f(x))恒成立,求k值,并求函數(shù)h(x)=f(x)+
g(x)
的值域;
(2)若k=-4,實數(shù)a滿足f(a2)=g(a2-a),求a
3
2
-a-
3
2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知學生的數(shù)學成績與物理成績具有線性相關關系,某班6名學生的數(shù)學和物理成績如表:
學生
學科
ABCDEF
數(shù)學成績(x)837873686373
物理成績(y)756575656080
(1)求物理成績y對數(shù)學成績x的線性回歸方程;
(2)當某位學生的數(shù)學成績?yōu)?0分時,預測他的物理成績.
參考公式:用最小二乘法求線性回歸方程
y
=
b
x+
a
的系數(shù)公式:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n•
.
x
.
y
n
i=1
xi2-n
.
x2
,
a
=
.
y
-
b
.
x

參考數(shù)據(jù):832+782+732+682+632+732=32224,
83×75+78×65+73×75+68×65+63×60+73×80=30810.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xa的圖象經(jīng)過點(3,9),則log2f(2)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓(x-2)2+(y-3)2=1和圓外一點 p(-1,4),求過點p的圓的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(1,2),
b
=(-3,1)則2
a
-
b
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設點P(x,y)是圓x2+(y+4)2=4上任意一點,則
(x-1)2+(y-1)2
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設l,m是不重合的兩直線,α,β是不重合的兩平面,其中正確命題的序號是
 

①若l∥α,α⊥β,則l⊥β;         ②若l⊥m,l⊥α,m⊥β,則α⊥β;
③若l⊥α,α⊥β,m?β,則l∥m;    ④若l⊥β,α⊥β,則l∥α或l?α

查看答案和解析>>

同步練習冊答案