求過(guò)點(diǎn)P(-1,2)且與點(diǎn)A(2,3)和B(-4,5)距離相等的直線l的方程.

答案:
解析:

  分析1:利用點(diǎn)到直線的距離公式建立等式求斜率k.

  解法1:設(shè)直線l的方程為y-2=k(x+1),即kx-y+k+2=0.

  

  


提示:

按常規(guī)解法已知一點(diǎn)求直線方程,通常會(huì)設(shè)點(diǎn)斜式方程,但要注意斜率不存在的情況,本題解法2利用數(shù)形結(jié)合的思想使運(yùn)算量大為減。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為:x2+y2=4.
(1)求過(guò)點(diǎn)P(1,2)且與圓C相切的直線l的方程;
(2)直線l過(guò)點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若|AB|=2
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=2x+1和圓C:x2+y2=4,
(1)試判斷直線和圓的位置關(guān)系.
(2)求過(guò)點(diǎn)P(-1,2)且與圓C相切的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求過(guò)點(diǎn)P(-1,2)且與兩坐標(biāo)軸的正半軸所圍成的三角形面積等于
12
的直線方程;
(2)求圓心在y軸上且經(jīng)過(guò)點(diǎn)M(-2,3),N(2,1)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在R上的函數(shù)f(x)=ax3+cx滿足:①函數(shù)f(x)在x1、x2處取得極值,且|x1-x2|=2;②函數(shù)f(x)的圖象過(guò)點(diǎn)(1,-2).
(1)求f(x)的表達(dá)式;
(2)求過(guò)點(diǎn)P(1,-2)與函數(shù)f(x)的圖象相切的直線方程;
(3)設(shè)f(x)在[t,t+2]上最大值M與最小值m之差M-m為g(t),求g(t)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求過(guò)點(diǎn)P(-1,2)且與兩坐標(biāo)軸的正半軸所圍成的三角形面積等于
12
的直線方程.
(2)求過(guò)兩直線l1:x+y-4=0,l2:2x-y-5=0的交點(diǎn),且與直線x-y+2=0平行及垂直的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案