設F1,F(xiàn)2分別是橢圓D:的左、右焦點,過F2作傾斜角為的直線交橢圓D于A,B兩點,F(xiàn)1到直線AB的距離為3,連接橢圓D的四個頂點得到的菱形面積為4.
(Ⅰ)求橢圓D的方程;
(Ⅱ)過橢圓D的左頂點P作直線l1交橢圓D于另一點Q.
(。┤酎cN(0,t)是線段PQ垂直平分線上的一點,且滿足,求實數(shù)t的值;
(ⅱ)過P作垂直于l1的直線l2交橢圓D于另一點G,當直線l1的斜率變化時,直線GQ是否過x軸上的一定點,若過定點,請給出證明,并求出該定點坐標;若不過定點,請說明理由.
【答案】分析:(Ⅰ)設出AB的方程,利用F1到直線AB的距離為3,可求得c的值,利用a2-b2=c2=3,連接橢圓D的四個頂點得到的菱形面積為4,即可求得橢圓D的方程;
(Ⅱ)設直線l1的方程代入橢圓D的方程,消去y,整理得一元二次方程,由韋達定理,可求得線段PQ的中點坐標;(。┊攌=0時,則有Q(2,0),線段PQ垂直平分線為y軸,利用,可求t的值;當k≠0時,求出線段PQ垂直平分線的方程,令x=0,得:,利用,可求t的值;
(ⅱ)設直線l2的方程與橢圓方程聯(lián)立,確定Q的坐標,從而可求GQ的直線方程,令y=0,即可得到結論.
解答:解:(Ⅰ)設F1,F(xiàn)2的坐標分別為(-c,0),(c,0),其中c>0
由題意得AB的方程為:
因F1到直線AB的距離為3,所以有,解得…(1分)
所以有a2-b2=c2=3…①
由題意知:,即ab=2…②
聯(lián)立①②解得:a=2,b=1
∴所求橢圓D的方程為…(4分)
(Ⅱ)由(Ⅰ)知:P(-2,0),設Q(x1,y1
根據(jù)題意可知直線l1的斜率存在,可設直線斜率為k,則直線l1的方程為y=k(x+2)
把它代入橢圓D的方程,消去y,整理得:(1+4k2)x2+16k2x+(16k2-4)=0
由韋達定理得,則,
∴y1=k(x1+2)=,∴,
∴線段PQ的中點坐標為…(6分)
(。┊攌=0時,則有Q(2,0),線段PQ垂直平分線為y軸,于是
,解得:…(8分)
當k≠0時,則線段PQ垂直平分線的方程為y-
因為點N(0,t)是線段PQ垂直平分線的一點,
令x=0,得:,于是
,解得:
代入,解得:
綜上,滿足條件的實數(shù)t的值為…(10分)
(ⅱ)設G(x2,y2),由題意知l1的斜率k≠0,直線l2的斜率為,則
化簡得:(k2+4)x2+16x+16-4k2=0.
∵此方程有一根為-2,得.…(12分)
,則
所以GQ的直線方程為
令y=0,則
所以直線GQ過x軸上的一定點…(14分)
點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查韋達定理的運用,考查學生分析解決問題的能力,綜合性強.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設F1、F2分別是橢圓
x2
4
+y2=1的左、右焦點.
(1)若P是該橢圓上的一個動點,求向量乘積
PF1
PF2
的取值范圍;
(2)設過定點M(0,2)的直線l與橢圓交于不同的兩點M、N,且∠MON為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍.
(3)設A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•南匯區(qū)二模)設F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個動點,求
PF1
PF2
的最大值和最小值;
(3)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•青島二模)設F1,F(xiàn)2分別是橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,過F2作傾斜角為
π
3
的直線交橢圓D于A,B兩點,F(xiàn)1到直線AB的距離為3,連接橢圓D的四個頂點得到的菱形面積為4.
(Ⅰ)求橢圓D的方程;
(Ⅱ)過橢圓D的左頂點P作直線l1交橢圓D于另一點Q.
(。┤酎cN(0,t)是線段PQ垂直平分線上的一點,且滿足
NP
NQ
=4
,求實數(shù)t的值;
(ⅱ)過P作垂直于l1的直線l2交橢圓D于另一點G,當直線l1的斜率變化時,直線GQ是否過x軸上的一定點,若過定點,請給出證明,并求出該定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設F1,F(xiàn)2分別是橢圓D:數(shù)學公式的左、右焦點,過F2作傾斜角為數(shù)學公式的直線交橢圓D于A,B兩點,F(xiàn)1到直線AB的距離為3,連接橢圓D的四個頂點得到的菱形面積為4.
(Ⅰ)求橢圓D的方程;
(Ⅱ)過橢圓D的左頂點P作直線l1交橢圓D于另一點Q.
(。┤酎cN(0,t)是線段PQ垂直平分線上的一點,且滿足數(shù)學公式,求實數(shù)t的值;
(ⅱ)過P作垂直于l1的直線l2交橢圓D于另一點G,當直線l1的斜率變化時,直線GQ是否過x軸上的一定點,若過定點,請給出證明,并求出該定點坐標;若不過定點,請說明理由.

查看答案和解析>>

同步練習冊答案