如圖,在三棱錐中,,且,平面,過(guò)作截面分別交,且二面角的大小為,則截面面積的最小值為      .

 

【答案】

【解析】

試題分析:過(guò)P做PG⊥EF,垂足為G,連接CG則由三垂線定理可得EF⊥CG,∴∠PGC即為二面角角P-EF-C的平面角,

∴∠PGC=60°,PC=1,∴在三角形PEF斜邊EF邊上的高為PG=,CG=,設(shè)CE=a,CF=b,則EF=,在三角形CEF中,ab=×,又,∴ab≥,∴,∴三角形PEF的面積為,故截面面積的最小值為

考點(diǎn):本題考查了二面角的應(yīng)用.

點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵是利用三垂線定理作出二面角,然后利用基本不等式求出最值即可

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐中,,,

(Ⅰ)求證;

(Ⅱ)求二面角的大小;

(Ⅲ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣西玉林市高二下學(xué)期三月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在三棱錐中,側(cè)面與側(cè)面均為等邊三角形,,中點(diǎn).

 (Ⅰ)證明:平面;

(Ⅱ)求二面角的余弦值.    (本題12分)

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省臺(tái)州市高三上學(xué)期期末理科數(shù)學(xué)試卷 題型:解答題

如圖,在三棱錐中, 兩兩垂直且相等,過(guò)的中點(diǎn)作平面,且分別交,交的延長(zhǎng)線于

(Ⅰ)求證:平面

(Ⅱ)若,求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011---2012學(xué)年四川省高二10月考數(shù)學(xué)試卷 題型:解答題

如圖:在三棱錐中,已知點(diǎn)、、分別為棱、、的中點(diǎn).

(Ⅰ)求證:∥平面;

(Ⅱ)若,,求證:平面⊥平面.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黑龍江省2013屆高一下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

如圖,在三棱錐中,中點(diǎn)。(1)求證:平面

(2)在線段上是否存在一點(diǎn),使二面角的平面角的余弦值為?若存在,確定點(diǎn)位置;若不存在,說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案