【題目】設(shè)拋物線,點(diǎn) 在拋物線上,過(guò)焦點(diǎn)且斜率為的直線與相交于兩點(diǎn),兩點(diǎn)在準(zhǔn)線上的投影分別為兩點(diǎn),則三角形的面__________

【答案】

【解析】

先消參得到拋物線C的方程,再將A1,2)代入拋物線Cy22px,解得p,設(shè)Ax1,y1),Bx2,y2),利用三角形MFN的面積SMFN|MN|[1﹣(﹣1]可得.

將拋物線C消去參數(shù)t,得到y22px,

A1,2)代入拋物線Cy22px42p,解得p2

所以拋物線C的方程為:y24x.焦點(diǎn)F1,0),準(zhǔn)線方程為:x=﹣1

直線AB的方程為:yx1)代入拋物線Cy24x消去x得:y2y40

設(shè)Ax1,y1),Bx2,y2),則y1+y2y1y2=﹣4,

|MN||y1y2|,

∴三角形MFN的面積SMFN|MN|[1﹣(﹣1]

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是正方形, ,點(diǎn)E在棱PB上.

(Ⅰ)求證:平面

(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,平面,,,,以,為鄰邊作平行四邊形,連接.

(Ⅰ)求證:平面;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)線段上是否存在點(diǎn),使平面與平面垂直?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)設(shè)

若函數(shù)處的切線過(guò)點(diǎn),求的值;

當(dāng)時(shí),若函數(shù)上沒(méi)有零點(diǎn),求的取值范圍;

2)設(shè)函數(shù),且),求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹(shù)的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿足如下關(guān)系:,且投入的肥料費(fèi)用不超過(guò)5百元.此外,還需要投入其他成本(如施肥的人工費(fèi)等)百元.已知這種水蜜桃的市場(chǎng)售價(jià)為16元/千克(即16百元/百千克),且市場(chǎng)需求始終供不應(yīng)求.記該棵水蜜桃樹(shù)獲得的利潤(rùn)為(單位:百元).

(1)求利潤(rùn)函數(shù)的函數(shù)關(guān)系式,并寫(xiě)出定義域;

(2)當(dāng)投入的肥料費(fèi)用為多少時(shí),該水蜜桃樹(shù)獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與橢圓:交于兩點(diǎn).

1)若線段的中點(diǎn)為,求直線的方程;

2)記直線軸交于點(diǎn),是否存在點(diǎn),使得始終為定值?若存在,求點(diǎn)的坐標(biāo),并求出該定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為實(shí)常數(shù)).

1)若的定義域是,求的值;

2)若是奇函數(shù),解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人各進(jìn)行3次投籃,甲每次投中目標(biāo)的概率為,乙每次投中目標(biāo)的概率為,假設(shè)兩人投籃是否投中相互之間沒(méi)有影響,每次投籃是否投中相互之間也沒(méi)有影響。

1)求甲至少有一次未投中目標(biāo)的概率;

2)記甲投中目標(biāo)的次數(shù)為,求的概率分布及數(shù)學(xué)期望;

3)求甲恰好比乙多投中目標(biāo)2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司設(shè)計(jì)如圖所示的環(huán)狀綠化景觀帶,該景觀帶的內(nèi)圈由兩條平行線段(圖中的)和兩個(gè)半圓構(gòu)成,設(shè),且.

(1)若內(nèi)圈周長(zhǎng)為,則取何值時(shí),矩形的面積最大?

(2)若景觀帶的內(nèi)圈所圍成區(qū)域的面積為,則取何值時(shí),內(nèi)圈周長(zhǎng)最。

查看答案和解析>>

同步練習(xí)冊(cè)答案