在用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*)時(shí),從k到k+1,左端需要增加的代數(shù)式是( 。
A、2k+1
B、2(2k+1)
C、
2k+1
k+1
D、
2k+3
k+1
分析:欲求從k到k+1,左端需要增加的項(xiàng),先看當(dāng)n=k時(shí),左端的式子,再看當(dāng)n=k+1時(shí),左端的式子,兩者作差即得.
解答:解:當(dāng)n=k+1時(shí),左端=
1
k+1
(k+1)(k+2)(k+k)(k+k+1)(k+1+k+1),
所以左端增加的代數(shù)式為
(k+k+1)(k+1+k+1)
1
k+1
=2(2k+1),
故選B.
點(diǎn)評(píng):本題主要考查數(shù)學(xué)歸納法,必須注意數(shù)學(xué)歸納法從k到k+1的變化的形式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在用數(shù)學(xué)歸納法證明1+a+a2+…+an+1=
1-an+2
1-a
(a≠1,n∈N*)
時(shí),在驗(yàn)證當(dāng)n=1時(shí),等式左邊為( 。
A、1
B、1+a
C、1+a+a2
D、1+a+a2+a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都一模)在用數(shù)學(xué)歸納法證明f(n)=
1
n
+
1
n+1
+…+
1
2n
<1(n∈N*,n≥3)的過(guò)程中:假設(shè)當(dāng)n=k(k∈N*,k≥3)時(shí),不等式f(k)<1成立,則需證當(dāng)n=k+1時(shí),f(k+1)<1也成立.若f(k+1)=f(k)+g(k),則g(k)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在用數(shù)學(xué)歸納法證明多邊形內(nèi)角和定理時(shí),第一步應(yīng)驗(yàn)證(    )

A.n=1成立                    B.n=2成立

C.n=3成立                    D.n=4成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P(n)=1+++…+,在用數(shù)學(xué)歸納法證明P(n)>的過(guò)程中,從P(k)到P(k+1)要添加的項(xiàng)是(  )

A.

B.

C.+

D.++…+

查看答案和解析>>

同步練習(xí)冊(cè)答案