【題目】如圖,直三棱柱中,,、、分別是線段、、的中點,,,在線段上運動,設.
(1)證明:;
(2)是否存在點,使得平面與平面所成的銳二面角的大小為?若存在,試確定點的位置;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】為增強學生法治觀念,營造“學憲法、知憲法、守憲法”的良好校園氛圍,某學校開展了“憲法小衛(wèi)士”活動,并組織全校學生進行法律知識競賽.現(xiàn)從全校學生中隨機抽取50人,統(tǒng)計他們的競賽成績,并得到如表所示的頻數分布表.
分數段 | |||||
人數 | 5 | 15 | 15 | 12 |
(Ⅰ)求頻數分布表中的的值,并估計這50名學生競賽成績的中位數(精確到0.1);
(Ⅱ)將成績在內定義為“合格”,成績在內定義為“不合格”.請將列聯(lián)表補充完整.
合格 | 不合格 | 合計 | |
高一新生 | 12 | ||
非高一新生 | 6 | ||
合計 |
試問:是否有95%的把握認為“法律知識的掌握合格情況”與“是否是高一新生”有關?說明你的理由;
(Ⅲ)在(Ⅱ)的前提下,在該50人中,按“合格與否”進行分層抽樣,隨機抽取5人,再從這5人中隨機抽取2人,求恰好2人都合格的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學志愿者協(xié)會有6名男同學,4名女同學.在這10名同學中,3名同學來自數學學院,其余7名同學來自物理、化學等其他互不相同的七個學院.現(xiàn)從這10名同學中隨機選取3名同學,到希望小學進行支教活動(每位同學被選到的可能性相同).
(1)求選出的3名同學是來自互不相同學院的概率;
(2)設為選出的3名同學中女同學的人數,求隨機變量的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數方程是(t為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程是.
(1)證明:直線l與曲線C相切;
(2)設直線l與x軸、y軸分別交于點A,B,點P是曲線C上任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某快遞公司在某市的貨物轉運中心,擬引進智能機器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買臺機器人的總成本萬元.
(1)若使每臺機器人的平均成本最低,問應買多少臺?
(2)現(xiàn)按(1)中的數量購買機器人,需要安排人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀,經實驗知,每臺機器人的日平均分揀量(單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大值時,用人數量比引進機器人前的用人數量最多可減少多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新高考,取消文理科,實行“”,成績由語文、數學、外語統(tǒng)一高考成績和自主選考的3門普通高中學業(yè)水平考試等級性考試科目成績構成.為了解各年齡層對新高考的了解情況,隨機調查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調查結果制成下表:
年齡(歲) | ||||||
頻數 | 5 | 15 | 10 | 10 | 5 | 5 |
了解 | 4 | 12 | 6 | 5 | 2 | 1 |
(1)分別估計中青年和中老年對新高考了解的概率;
(2)請根據上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?
了解新高考 | 不了解新高考 | 總計 | |
中青年 | |||
中老年 | |||
總計 |
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(3)若從年齡在的被調查者中隨機選取3人進行調查,記選中的3人中了解新高考的人數為,求的分布列以及.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長度為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓交于兩點,點是橢圓上的點,是坐標原點,若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com