若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為P點(diǎn)的坐標(biāo),則點(diǎn)P落在圓x2+y2=16內(nèi)的概率是________.

答案:
解析:

  答案:

  思路解析:求出基本事件總數(shù)及事件A所包含的基本事件個(gè)數(shù),利用等可能事件的概率公式來(lái)求,是解這類(lèi)問(wèn)題的基本方法.基本事件總數(shù)為6×6=36個(gè),記事件A={點(diǎn)P(m,n)落在圓x2+y2=16內(nèi)},則事件A所包含的基本事件有(1,1),(2,2),(1,3),(1,2),(2,3),(3,1),(3,2),(2,1)共8個(gè).

所以P(A)=


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m,n作為點(diǎn)P的橫、縱坐標(biāo),則點(diǎn)P在直線(xiàn)x+y=5上的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的橫、縱坐標(biāo),則點(diǎn)P在直線(xiàn)x+y=5下方的概率為.
A、
1
6
B、
1
4
C、
1
12
D、
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在圓x2+y2=16內(nèi)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo)(m,n),則點(diǎn)P在圓x2+y2=25外的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012高三數(shù)學(xué)一輪復(fù)習(xí)單元練習(xí)題 概率與統(tǒng)計(jì)(3) 題型:022

若以連續(xù)擲兩次骰子分別得點(diǎn)數(shù)m,n作為點(diǎn)P的橫、縱坐標(biāo),則點(diǎn)P落在圓x2y2=16內(nèi)的概率是________

查看答案和解析>>

同步練習(xí)冊(cè)答案