【題目】定義符號函數(shù),已知函數(shù).
(1)已知,求實數(shù)的取值集合;
(2)當(dāng)時,在區(qū)間上有唯一零點,求的取值集合;
(3)已知在上的最小值為,求正實數(shù)的取值集合;
【答案】(1);(2);(3);
【解析】
(1)先求出的表達式,再解關(guān)于的不等式,從而求得的值;
(2)當(dāng)時,寫出函數(shù)解析式,再將問題轉(zhuǎn)化為函數(shù)與在區(qū)間上有唯一的交點,作出圖象,即可得到答案;
(3)由題意得,,再對分和兩種情況討化,對的情況,再進行二級討論,即和兩種情況,最后進行綜合得到正實數(shù)的取值集合.
(1)因為,
所以或
解得:或,
所以實數(shù)的取值集合為.
(2)當(dāng)時,
所以
因為在區(qū)間上有唯一零點,
所以方程在區(qū)間上有唯一的根,
所以函數(shù)與在區(qū)間上有唯一的交點,
函數(shù)的圖象,如圖所示:
當(dāng)或時,兩個函數(shù)圖象只有一個公共點,
所以的取值集合為時,在區(qū)間上有唯一零點.
(3)當(dāng)時,在恒成立,
因為,,
①當(dāng)時,,
所以在恒成立,
所以.
②當(dāng)時,,
ⅰ)當(dāng)時,上式,
所以在恒成立,
所以,此時的數(shù)都成立;
ⅱ)當(dāng)時,,
所以在恒成立,
當(dāng),即時,,
所以;
當(dāng),即時,,
所以;
所以;
綜合①②可得:或,
所以正實數(shù)的取值集合為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于直線對稱,則( )
A.函數(shù)為奇函數(shù)
B.函數(shù)在上單調(diào)遞增
C.若,則的最小值為
D.函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的展開圖如圖二,其中四邊形為邊長等于的正方形,和均為正三角形,在三棱錐中:
(1)證明:平面平面;
(2)若是的中點,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】郴州某超市計劃按月訂購一種飲料,每天進貨量相同,進貨成本每瓶6元,售價每瓶8元,未售出的飲料降價處理,以每瓶3元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | , | , | , | , | , | , |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.
(1)求六月份這種飲料一天的需求量X(單位:瓶)的分布列;
(2)設(shè)六月份一天銷售這種飲料的利潤為Y(單位:元),當(dāng)六月份這種飲料一天的進貨量n(單位:瓶)為多少時,Y的數(shù)學(xué)期望達到最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,O為AC與BD的交點,E為棱PB上一點.
(1)證明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,求三棱錐P-EAD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間和函數(shù)的最值;
(2)已知關(guān)于的不等式對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年1月1日新修訂的個稅法正式實施,規(guī)定:公民全月工資、薪金所得不超過5000元的部分不必納稅,超過5000元的部分為全月應(yīng)納稅所得額.此項稅款按下表分段累計計算(預(yù)扣):
全月應(yīng)繳納所得額 | 稅率 |
不超過3000元的部分 | |
超過3000元至12000元的部分 | |
超過12000元至25000元的部分 |
國家在實施新個稅時,考慮到納稅人的實際情況,實施了《個人所得稅稅前專項附加扣稅暫行辦法》,具體如下表:
項目 | 每月稅前抵扣金額(元) | 說明 |
子女教育 | 1000 | 一年按12月計算,可扣12000元 |
繼續(xù)教育 | 400 | 一年可扣除4800元,若是進行技能職業(yè)教育或者專業(yè)技術(shù)職業(yè)資格教育一年可扣除3600元 |
大病醫(yī)療 | 5000 | 一年最高抵扣金額為60000元 |
住房貸款利息 | 1000 | 一年可扣除12000元,若夫妻雙方在同一城市工作,可以選擇一方來扣除 |
住房租金 | 1500/1000/800 | 扣除金額需要根據(jù)城市而定 |
2000 | 一年可扣除24000元,若不是獨生子女,子女平均扣除.贍養(yǎng)老人年齡需要在60周歲及以上 |
老李本人為獨生子女,家里有70歲的老人需要贍養(yǎng),有一個女兒正讀高三,他每月還需繳納住房貸款2734元.若2019年11月老李工資,薪金所得為20000元,按照《個人所得稅稅前專項附加扣稅暫行辦法》,則老李應(yīng)繳納稅款(預(yù)扣)為______元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如下圖所示(收支差額=車票收入-支出費用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(1)不改變車票價格,減少支出費用;建議(2)不改變支出費用,提高車票價格.下面給出的四個圖形中,實線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則( )
A.①反映建議(2),③反映建議(1)B.①反映建議(1),③反映建議(2)
C.②反映建議(1),④反映建議(2)D.④反映建議(1),②反映建議(2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com