精英家教網 > 高中數學 > 題目詳情

已知集合,,設是等差數列的前項和,若的任一項,且首項中的最大數, .
(1)求數列的通項公式;
(2)若數列滿足,求的值.

(1));(2).

解析試題分析:(1)首先由題設知: 集合中所有元素可以組成以為首項,為公差的遞減等差數列;集合中所有的元素可以組成以為首項,為公差的遞減等差數列.
得到中的最大數為,得到等差數列的首項.
通過設等差數列的公差為,建立的方程組,
根據,求得
由于中所有的元素可以組成以為首項,為公差的遞減等差數列,
所以,由,得到.
(2)由(1)得到,
于是可化為等比數列的求和.
試題解析:(1)由題設知: 集合中所有元素可以組成以為首項,為公差的遞減等差數列;集合中所有的元素可以組成以為首項,為公差的遞減等差數列.
由此可得,對任意的,有
中的最大數為,即             3分
設等差數列的公差為,則,
因為, ,即
由于中所有的元素可以組成以為首項,為公差的遞減等差數列,
所以,由,所以 
所以數列的通項公式為)        8分
(2)           9分
于是有   

     12分
考點:等差數列的通項公式、求和公式,一元一次不等式的解法,等比數列的求和公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知等差數列{an}中,a5=12,a20=-18.
(1)求數列{an}的通項公式;
(2)求數列{|an|}的前n項和Sn.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在數列中,若,為常數),則稱數列.
(1)若數列數列,,,寫出所有滿足條件的數列的前項;
(2)證明:一個等比數列為數列的充要條件是公比為;
(3)若數列滿足,,設數列的前項和為.是否存在
正整數,使不等式對一切都成立?若存在,求出的值;
若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若數列{an}滿足an+1=an+an+2(n∈N*),則稱數列{an}為“凸數列”.
(1)設數列{an}為“凸數列”,若a1=1,a2=-2,試寫出該數列的前6項,并求出前6項之和;
(2)在“凸數列”{an}中,求證:an+3=-an,n∈N*;
(3)設a1=a,a2=b,若數列{an}為“凸數列”,求數列前2011項和S2011.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列中,.
(1)求證:是等比數列,并求的通項公式;
(2)數列滿足,數列的前n項和為,若不等式對一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}中,a1=1,前n項和Sn=an.
(1)求a2,a3;
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知公差不為0的等差數列的前3項和=9,且成等比數列
(1)求數列的通項公式和前n項和
(2)設為數列的前n項和,若對一切恒成立,求實數的最小值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是正數組成的數列,,且點在函數的圖象上.
(Ⅰ)求數列的通項公式;
(Ⅱ)若數列滿足,,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

三個不同的數成等差數列,其和為6,如果將此三個數重新排列,他們又可以成等比數列,求這個等差數列。

查看答案和解析>>

同步練習冊答案