若函數(shù)f(x)=
x2-1(x≥0)
-1(x<0)
,則滿足f(4-x2)>f(4x)的x的取值范圍是
 
考點:其他不等式的解法
專題:計算題,函數(shù)的性質(zhì)及應用,不等式的解法及應用
分析:由函數(shù)的單調(diào)性,原不等式等價于
4-x2>0
4x<0
,或2-x2>3x≥0,由此可求x的取值范圍.
解答: 解:由已知函數(shù)f(x)為R上的單調(diào)遞增函數(shù),
可得f(4-x2)>f(4x)
即為
4-x2>0
4x<0
,或4-x2>4x≥0
∴-2<x<0或0≤x<2
2
-2
∴x的取值范圍是(-2,2
2
-2).
故答案為:(-2,2
2
-2).
點評:本題考查不等式的解法,考查函數(shù)的性質(zhì),考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+
2-3a
2
x2
+bx(a,b為常數(shù))
(1)若y=f(x)的圖象在x=2處的切線方程為x-y+6=0,求函數(shù)f(x)的解析式;
(2)在(1)的條件下,求函數(shù)y=f(x)的圖象與y=-
1
2
[f′(x)-9x-3]+m的圖象交點的個數(shù);
(3)當a=1時,?x∈(0,+∞),lnx≤f'(x)恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的是( 。
A、異面直線a,b不垂直,則不存在互相垂直的平面α,β分別過a,b
B、直線l不垂直平面α,則α內(nèi)不存在與l垂直的直線
C、直線l與平面α平行,則過α內(nèi)一點有且只有一條直線與l平行
D、平面α,β垂直,則過α內(nèi)一點有無數(shù)條直線與β垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①直線垂直于一個平面內(nèi)的無數(shù)條直線是這條直線與這個平面垂直的充要條件;
②過空間一定點有且只有一條直線與已知平面垂直;
③不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行是這條直線和這個平面平行的充分條件;
其中真命題有幾個( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由下列條件求雙曲線的標準方程:
(1)兩焦點坐標為(-5,0),(5,0),雙曲線上一點P與兩焦點距離的差的絕對值為8;
(2)兩焦點坐標為(0,-6),(0,6),且雙曲線過點(-5,6).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax-ex,a∈R,e為自然對數(shù)的底數(shù).
(I)若函數(shù)f(x)存在兩個零點,求a的取值范圍;
(Ⅱ)若對任意x∈R,a>0,f(x)≤a2ka恒成立,求實數(shù)K的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
,
b
是兩個非零向量,則“
a
b
的夾角為鈍角”是“
a
b
<0
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一直線過點(0,4),并且在兩坐標軸上截距之和為8,則這條直線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

lim
x→3
x-3
x2-9
=
 

查看答案和解析>>

同步練習冊答案