(文科)若(a-2x)5的展開式中x4的系數(shù)為-300,則a=________

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義:如果數(shù)列{an}的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
(1)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項為2010,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項.
[理科]根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點分別為F1、F2,過點 F1作傾斜角為30°的直線l,l與雙曲線的右支交于點P,若線段PF1的中點M落在y軸上,則雙曲線的漸近線方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)兩定點F1(0,-
5
)、F2(0,
5
)
,動點P滿足條件:|
PF1
|-|
PF2
|=4
,設(shè)點P的軌跡是曲線E,O為坐標(biāo)原點.
(I)求曲線E的方程;
(II)若直線y=k(x+1)與曲線E相交于兩不同點Q、R,求
OQ
OR
的取值范圍;
(III)(文科做)設(shè)A、B兩點分別在直線y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,記xA、xB分別為A、B兩點的橫坐標(biāo),求|xA•xB|的最小值.
(理科做)設(shè)A、B兩點分別在直線y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)已知函數(shù)f(x)=
13
ax3+bx2+2x-1,g(x)=-x2+x+1
,若函數(shù)f(x)的圖象與函數(shù)g(x)的圖象的一個公共點P的橫坐標(biāo)為1,且兩曲線在點P處的切線互相垂直.
(1)求實數(shù)a,b的值;
(2)對任意x1,x2∈[-1,1],不等式f(x1)+k<g(x2)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案