4.如圖,在矩形ABCD中,AB=$\sqrt{2}$,BC=2,點(diǎn)E為BC的中點(diǎn),點(diǎn)F在邊CD上,若$\overrightarrow{AB}$•$\overrightarrow{AF}$=$\sqrt{2}$,求$\overrightarrow{AE}$•$\overrightarrow{AF}$.

分析 建立坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),然后求解數(shù)量積即可.

解答 解:以AB,AD為x,y軸建立直角坐標(biāo)系如圖:
則B($\sqrt{2},0$),A(0,0),D(0,2),
∵$\overrightarrow{AB}$•$\overrightarrow{AF}$=$\sqrt{2}$,∴F(1,2),
點(diǎn)E為BC的中點(diǎn),∴E($\sqrt{2},1$).
$\overrightarrow{AE}$•$\overrightarrow{AF}$=($\sqrt{2},1$)•(1,2)=2+$\sqrt{2}$.

點(diǎn)評(píng) 本題考查向量在幾何中的應(yīng)用,建立空間直角坐標(biāo)系是解題的關(guān)鍵之一,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為e=$\frac{{\sqrt{2}}}{2}$,過焦點(diǎn)且垂直于長軸的弦長為$\sqrt{2}$.
(Ⅰ)求橢圓C的方程:
(Ⅱ)斜率為k的真線l經(jīng)過橢圓C的右焦點(diǎn)F且與橢圓交于不同的兩點(diǎn)A,B設(shè)$\overrightarrow{FA}=λ\overrightarrow{FB}$λ∈(-2,-1),求直線l斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,△ABC是直角三角形,∠ACB=90°,以AC為直徑的圓O交AB于F,點(diǎn)D是BC的中點(diǎn),連接OD交圓O于點(diǎn)E.
(1)求證:O,C,D,F(xiàn)四點(diǎn)共圓;
(2)求證:2DF2=DE•AB+DE•AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\overrightarrow{a}$與$\overrightarrow$的夾角θ=60°,求(2$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦點(diǎn)分別為F,F(xiàn)′,雙曲線C2:$\frac{x^2}{{{a^2}-{b^2}}}-\frac{y^2}{b^2}$=1與橢圓C1在第一象限的一個(gè)交點(diǎn)為P,有以下四個(gè)結(jié)論:
①$\overrightarrow{PF}•\overrightarrow{P{F^'}}$>0,且三角形PFF′的面積小于b2;
②當(dāng)a=$\sqrt{2}$b時(shí),∠PF′F-∠PFF′=$\frac{π}{2}$;
③分別以PF,F(xiàn)F′為直徑作圓,這兩個(gè)圓相內(nèi)切; 
④曲線C1與C2的離心率互為倒數(shù).
其中正確的有( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某幾何體的三視圖如圖所示,圖中3個(gè)三角表均為直角三角形,則該幾何體的體積的最大值$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在等差數(shù)列{an}中,Sn為數(shù)列{an}的前n項(xiàng)和,滿足a5=-1,S5=-12
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求前n項(xiàng)和為Sn,并指出當(dāng)n為何值時(shí),Sn取最小值;
(3)若Tn=|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求數(shù)列$\frac{1}{{1}^{2}+2}$,$\frac{1}{{2}^{2}+4}$,$\frac{1}{{3}^{2}+6}$,$\frac{1}{{4}^{2}+8}$,…,$\frac{1}{{n}^{2}+2n}$的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖所示,已知圓O1與圓O2相交于A、B兩點(diǎn),過A點(diǎn)作圓O1的切線交圓O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交圓O1、圓O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.
(1)求證:AD∥EC;
(2)若PA=6,PC=2,BD=9,求PE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案