【題目】將函數(shù)y=sin(2x﹣ )圖象向左平移 個單位,所得函數(shù)圖象的一條對稱軸的方程是(
A.x=
B.x=
C.x=
D.x=﹣

【答案】A
【解析】解:將函數(shù)y=sin(2x﹣ )圖象向左平移 個單位,所得函數(shù)圖象對應(yīng)的解析式為 y=sin[2(x+ )﹣ ]=sin(2x+ ).
令2x+ =kπ+ ,k∈z,求得 x= + ,
故函數(shù)的一條對稱軸的方程是x= ,
故選:A.
【考點(diǎn)精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點(diǎn)向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行下面的程序框圖,若p=0.95,則輸出的n=(

A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , a1=10,an+1=9Sn+10.
(1)求證:{lgan}是等差數(shù)列;
(2)設(shè)Tn是數(shù)列{ }的前n項(xiàng)和,求Tn
(3)求使Tn (m2﹣5m)對所有的n∈N*恒成立的整數(shù)m的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了準(zhǔn)確地把握市場,做好產(chǎn)品生產(chǎn)計(jì)劃,對過去四年的數(shù)據(jù)進(jìn)行整理得到了第年與年銷量 (單位:萬件)之間的關(guān)系如表:

(Ⅰ)在圖中畫出表中數(shù)據(jù)的散點(diǎn)圖;

(Ⅱ)根據(jù)(Ⅰ)中的散點(diǎn)圖擬合的回歸模型,并用相關(guān)系數(shù)甲乙說明;

(Ⅲ)建立關(guān)于的回歸方程,預(yù)測第5年的銷售量約為多少?.

附注:參考數(shù)據(jù): , , .

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a>0,命題q:實(shí)數(shù)x滿足
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】研究人員隨機(jī)調(diào)查統(tǒng)計(jì)了某地1000名“上班族”每天在工作之余使用手機(jī)上網(wǎng)的時間,并將其繪制為如圖所示的頻率分布直方圖.若同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表,則可估計(jì)該地“上班族”每天在工作之余使用手機(jī)上網(wǎng)的平均時間是(

A.1.78小時
B.2.24小時
C.3.56小時
D.4.32小時

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“演講團(tuán)”、“吉他協(xié)會”等五個社團(tuán),若每名同學(xué)必須參加且只能參加1個社團(tuán)且每個社團(tuán)至多兩人參加,則這6個人中沒有人參加“演講團(tuán)”的不同參加方法數(shù)為( )

A. 3600 B. 1080 C. 1440 D. 2520

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為等差數(shù)列,且a1=1.{bn}為等比數(shù)列,數(shù)列{an+bn}的前三項(xiàng)依次為3,7,13.求
(1)數(shù)列{an},{bn}的通項(xiàng)公式;
(2)數(shù)列{an+bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:an≠0,a1= ,an﹣an+1=2anan+1 . (n∈N*).
(1)求證:{ }是等差數(shù)列,并求出an;
(2)證明:a1a2+a2a3+…+anan+1

查看答案和解析>>

同步練習(xí)冊答案