【題目】數(shù)列: 滿足: , 或1().對任意,都存在,使得.,其中 且兩兩不相等.
(I)若.寫出下列三個數(shù)列中所有符合題目條件的數(shù)列的序號;
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)記.若,證明: ;
(Ⅲ)若,求的最小值.
【答案】(Ⅰ) ②③(Ⅱ)見解析(Ⅲ)的最小值為
【解析】試題分析:(Ⅰ)依據(jù)定義檢驗給出的數(shù)列是否滿足要求條件.(Ⅱ)當時, 都在數(shù)列中出現(xiàn),可以證明至少出現(xiàn)4次,2至少出現(xiàn)2次,這樣. (Ⅲ)設出現(xiàn)頻數(shù)依次為.同(Ⅱ)的證明,可得: , , ,┄, , , ,則,我們再構造數(shù)列:
,證明該數(shù)列滿足題設條件,從而的最小值為.
解析:(Ⅰ)對于①,,對于, 或,不滿足要求;對于②,若,則,且彼此相異,若,則,且彼此相異,若,則,且彼此相異,故②符合題目條件;同理③也符合題目條件,故符合題目條件的數(shù)列的序號為②③.
注:只得到 ② 或只得到 ③ 給[ 1分],有錯解不給分.
(Ⅱ)當時,設數(shù)列中出現(xiàn)頻數(shù)依次為,由題意.
① 假設,則有(對任意),與已知矛盾,所以.同理可證: .
② 假設,則存在唯一的,使得.那么,對,有(兩兩不相等),與已知矛盾,所以.
綜上: , , ,所以.
(Ⅲ)設出現(xiàn)頻數(shù)依次為.同(Ⅱ)的證明,可得: , , ,┄, , , ,則.
取得到的數(shù)列為:
下面證明滿足題目要求.對,不妨令,
① 如果或,由于,所以符合條件;
② 如果或,由于,所以也成立;
③ 如果,則可選取;同樣的,如果,
則可選取,使得,且兩兩不相等;
④ 如果,則可選取,注意到這種情況每個數(shù)最多被選取了一次,因此也成立.綜上,對任意,總存在,使得,其中且兩兩不相等.因此滿足題目要求,所以的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),記.
(1)求證: 在區(qū)間內(nèi)有且僅有一個實數(shù);
(2)用表示中的最小值,設函數(shù),若方程在區(qū)間內(nèi)有兩個不相等的實根,記在內(nèi)的實根為.求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為常數(shù),設為自然對數(shù)的底數(shù).
(1)當時,求的最大值;
(2)若在區(qū)間上的最大值為,求的值;
(3)設,若,對于任意的兩個正實數(shù),證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐中, 平面, ,點分別為的中點,設直線與平面交于點.
(1)已知平面平面,求證: .
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足: , , .
(1)求數(shù)列的通項公式;
(2)設數(shù)列的前項和為,且滿足,試確定的值,使得數(shù)列為等差數(shù)列;
(3)將數(shù)列中的部分項按原來順序構成新數(shù)列,且,求證:存在無數(shù)個滿足條件的無窮等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的焦點為,準線為,點在拋物線上,已知以點為圓心, 為半徑的圓交于兩點.
(Ⅰ)若, 的面積為4,求拋物線的方程;
(Ⅱ)若三點在同一條直線上,直線與平行,且與拋物線只有一個公共點,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com