設(shè)同時(shí)滿足條件:① ;② (,是與無(wú)關(guān)的常數(shù))的無(wú)窮數(shù)列叫“嘉文”數(shù)列.已知數(shù)列的前項(xiàng)和滿足: (為常數(shù),且,).
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)設(shè),若數(shù)列為等比數(shù)列,求的值,并證明此時(shí)為“嘉文”數(shù)列.
(I)∴.
(II)由(I)知,,
若為等比數(shù)列,則有,而。
故,解得,再將代入得:,其為等比數(shù)列,所以成立。由于①。
②,故存在;
所以符合①②,故為“嘉文”數(shù)列。
【解析】本試題主要是考查了數(shù)列的通項(xiàng)公式的求解和數(shù)列的求和的運(yùn)用以及等比數(shù)列定義問(wèn)題。
(1)根據(jù)前n項(xiàng)和與通項(xiàng)公式的 關(guān)系得到數(shù)列的通項(xiàng)公式。
(2)根據(jù)新定義和第一問(wèn)的結(jié)論來(lái)判定數(shù)列是否符合題意
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
bn+bn+2 |
2 |
a |
a-1 |
2Sn |
an |
1 |
bn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
bn+bn+2 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年濟(jì)寧質(zhì)檢一文)(12分)
設(shè)同時(shí)滿足條件:①;②(是與無(wú)關(guān)的常數(shù))的無(wú)窮數(shù)列叫“特界” 數(shù)列.
(Ⅰ)若數(shù)列為等差數(shù)列,是其前項(xiàng)和,,求;
(Ⅱ)判斷(Ⅰ)中的數(shù)列是否為“特界” 數(shù)列,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省臺(tái)州市高三上學(xué)期期末文科數(shù)學(xué)試卷 題型:解答題
已知數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.數(shù)列滿足,是的前項(xiàng)和.
(Ⅰ)求;
(Ⅱ)設(shè)同時(shí)滿足條件:①;②(,是與無(wú)關(guān)的常數(shù))的無(wú)窮數(shù)列叫“特界”數(shù)列.判斷(1)中的數(shù)列是否為“特界”數(shù)列,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省青島市高三上學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
設(shè)同時(shí)滿足條件:①;②(,是與無(wú)關(guān)的常數(shù))的無(wú)窮數(shù)列叫“嘉文”數(shù)列.已知數(shù)列的前項(xiàng)和滿足:(為常數(shù),且,).
(Ⅰ)求的通項(xiàng)公式;[來(lái)源:學(xué)*科*網(wǎng)Z*X*X*K]
(Ⅱ)設(shè),若數(shù)列為等比數(shù)列,求的值,并證明此時(shí)為“嘉文”數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com