【題目】2016520日以來,廣東自西北到東南出現(xiàn)了一次明顯降雨.為了對某地的降雨情況進行統(tǒng)計,氣象部門對當(dāng)?shù)?/span>20~289天記錄了其中100小時的降雨情況,得到每小時降雨情況的頻率分布直方圖如下:

若根據(jù)往年防汛經(jīng)驗,每小時降雨量在時,要保持二級警戒,每小時降雨量在時,要保持一級警戒.

1)若從記錄的這100小時中按照警戒級別采用分層抽樣的方法抽取10小時進行深度分析.

①求一級警戒和二級警戒各抽取多少小時;

②若從這10個小時中任選2個小時,則這2個小時中恰好有1小時屬于一級警戒的概率.2)若以每組的中點代表該組數(shù)據(jù)值,求這100小時內(nèi)的平均降雨量.

【答案】1)①一級警戒3小時,二級警戒7小時②287.25mm

【解析】

1)根據(jù)頻率分布直方圖,分別求得屬于一級警戒的頻率和屬于二級警戒的頻率,即可由分層抽樣的性質(zhì)求解;根據(jù)古典概型概率,設(shè)屬于一級警戒的3小時分別為1,23,

屬于二級警戒的分別為45,6,7,8,9,0,列舉出任選2個小時的所有情況,即可求得恰好有1小時屬于一級警戒的概率.

2)根據(jù)頻率分布直方圖中平均數(shù)的求法,即可得解.

1)①由頻率分步直方圖可知,屬于一級警戒的頻率為:(0.04+0.02)×5=0.3,

則屬于二級警戒的頻率為10.3=0.7.

所以,抽取的這10個小時中,屬于一級警戒的有3小時,屬于二級警戒的有7小時.

②設(shè)抽取的這10小時中,屬于一級警戒的3小時分別為1,2,3,

屬于二級警戒的分別為4,5,67,8,90.則從中抽取2小時的不同情況有:

(1,2)(1,3),(14),(1,5),(1,6),(17),(1,8)(1,9),(1,0),

(2,3),(2,4),(35),(2,6),(27),(2,8),(29),(2,0),

………………………………

(8,9),(8,0),(90).

9+8+7+…+2+1=45種不同情況,其中恰好有1小時屬于一級警戒的情況有:

7+7+7=21種不同情況,故所求概率為.

2)這五組數(shù)據(jù)對應(yīng)的頻率分別為:0.05,0.35,0.3,0.20.1.

故這100小時的平均降雨量為:

0.05×77.5+0.35×82.5+0.3×87.5+0.2×92.5+0.1×97.5=87.25.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在橢圓)上,且點到左焦點的距離為3.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)為坐標(biāo)原點,與直線平行的直線交橢圓于不同兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnxbR),gx.

1)討論函數(shù)fx)的單調(diào)性

2)是否存在實數(shù)b使得函數(shù)yfx)在x∈(,+∞)上的圖象存在函數(shù)ygx)的圖象上方的點?若存在,請求出最小整數(shù)b的值,若不存在,請說明理由.(參考數(shù)據(jù)ln20.69311.6487

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于,兩點.

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若點的極坐標(biāo)為,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,且在橢圓上運動,當(dāng)點恰好在直線l:上時,的面積為.

1)求橢圓的方程;

2)作與平行的直線,與橢圓交于兩點,且線段的中點為,若的斜率分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中為常數(shù)).

1)若上單調(diào)遞增,求實數(shù)的取值范圍;

2)若上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),證明:

1在區(qū)間存在唯一極大值點;

2有且僅有2個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,函數(shù),處取得極值,其中.

1)求實數(shù)t的取值范圍;

2)判斷上的單調(diào)性并證明;

3)已知上的任意,都有,令,若函數(shù)3個不同的零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當(dāng)時世界上圓周率計算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時,某同學(xué)利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

同步練習(xí)冊答案