【題目】新能源汽車已經(jīng)走進我們的生活,逐漸為大家所青睞.現(xiàn)在有某品牌的新能源汽車在甲市進行預(yù)售,預(yù)售場面異常火爆,故該經(jīng)銷商采用競價策略基本規(guī)則是:①競價者都是網(wǎng)絡(luò)報價,每個人并不知曉其他人的報價,也不知道參與競價的總?cè)藬?shù);②競價采用“一月一期制”,當月競價時間截止后,系統(tǒng)根據(jù)當期汽車配額,按照競價人的出價從高到低分配名額.某人擬參加2020年6月份的汽車競價,他為了預(yù)測最低成交價,根據(jù)網(wǎng)站的公告,統(tǒng)計了最近5個月參與競價的人數(shù)(如下表)
月份 | 2020.01 | 2020.02 | 2020.03 | 2020.04 | 2020.05 |
月份編號 | 1 | 2 | 3 | 4 | 5 |
競拍人數(shù)(萬人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集數(shù)據(jù)的散點圖發(fā)現(xiàn),可用線性回歸模型擬合競價人數(shù)y(萬人)與月份編號t之間的相關(guān)關(guān)系.請用最小二乘法求y關(guān)于t的線性回歸方程:,并預(yù)測2020年6月份(月份編號為6)參與競價的人數(shù);
(2)某市場調(diào)研機構(gòu)對200位擬參加2020年6月份汽車競價人員的報價進行了一個抽樣調(diào)查,得到如表所示的頻數(shù)表:
報價區(qū)間(萬元) | ||||||
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求這200位競價人員報價的平均值和樣本方差s2(同一區(qū)間的報價用該價格區(qū)間的中點值代替)
(ii)假設(shè)所有參與競價人員的報價X可視為服從正態(tài)分布且μ與σ2可分別由(i)中所示的樣本平均數(shù)及s2估計.若2020年月6份計劃提供的新能源車輛數(shù)為3174,根據(jù)市場調(diào)研,最低成交價高于樣本平均數(shù),請你預(yù)測(需說明理由)最低成交價.
參考公式及數(shù)據(jù):
①回歸方程,其中
②
③若隨機變量X服從正態(tài)分布則
.
【答案】(1),20000人.(2)(i)11萬元,6.8(ii)13.6萬元
【解析】
(1)利用最小二乘法得出回歸方程,并將代入回歸方程,即可預(yù)測2020年6月份(月份編號為6)參與競價的人數(shù);
(2)(i)由頻數(shù)表中數(shù)據(jù),利用平均數(shù)和方差的求解方法求解即可;
(ii)由題意得出競拍成功的概率,根據(jù)正態(tài)分布的性質(zhì),即可確定最低成交價.
解:(1)根據(jù)題意,得:,
,
則
從而得到直線的回歸方程為
當時,.
所以預(yù)測2020年6月份(月份編號為6)參與競價的人數(shù)為20000人.
(2)(i)根據(jù)表中給的數(shù)據(jù)求得平均值和方差為
(萬元).
.
(ii)競拍成功的概率為
由題意知
所以
所以
所以2020年6月份的預(yù)測的最低成交價萬元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點.
(Ⅰ)證明:平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,點為線段的中點,點為線段上靠近的三等分點.現(xiàn)沿進行翻折,得到四棱錐,如圖2,且.在圖2中:
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】按照水果市場的需要等因素,水果種植戶把某種成熟后的水果按其直徑的大小分為不同等級.某商家計劃從該種植戶那里購進一批這種水果銷售.為了了解這種水果的質(zhì)量等級情況,現(xiàn)隨機抽取了100個這種水果,統(tǒng)計得到如下直徑分布表(單位:mm):
d | |||||
等級 | 三級品 | 二級品 | 一級品 | 特級品 | 特級品 |
頻數(shù) | 1 | m | 29 | n | 7 |
用分層抽樣的方法從其中的一級品和特級品共抽取6個,其中一級品2個.
(1)估計這批水果中特級品的比例;
(2)已知樣本中這批水果不按等級混裝的話20個約1斤,該種植戶有20000斤這種水果待售,商家提出兩種收購方案:
方案A:以6.5元/斤收購;
方案B:以級別分裝收購,每袋20個,特級品8元/袋,一級品5元/袋,二級品4元/袋,三級品3元/袋.
用樣本的頻率分布估計總體分布,問哪個方案種植戶的收益更高?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)共有1000人,其中男生700人,女生300人,為了了解該校學(xué)生每周平均體育鍛煉時間的情況以及經(jīng)常進行體育鍛煉的學(xué)生是否與性別有關(guān)(經(jīng)常進行體育鍛煉是指:周平均體育鍛煉時間不少于4小時),現(xiàn)在用分層抽樣的方法從中收集200位學(xué)生每周平均體育鍛煉時間的樣本數(shù)據(jù)(單位:小時),其頻率分布直方圖如圖.已知在樣本數(shù)據(jù)中,有40位女生的每周平均體育鍛煉時間超過4小時,根據(jù)獨立性檢驗原理( )
附:,其中.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
A.有95%的把握認為“該校學(xué)生每周平均體育鍛煉時間與性別無關(guān)”
B.有90%的把握認為“該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)”
C.有90%的把握認為“該校學(xué)生每周平均體育鍛煉時間與性別無關(guān)”
D.有95%的把握認為“該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,為曲線上一動點,過作兩條漸近線的垂線,垂足分別是和.
(1)當運動到時,求的值;
(2)設(shè)直線(不與軸垂直)與曲線交于、兩點,與軸正半軸交于點,與軸交于點,若,,且,求證為定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省從2021年開始,高考采用取消文理分科,實行“”的模式,其中的“1”表示每位學(xué)生必須從物理、歷史中選擇一個科目且只能選擇一個科目.某校高一年級有2000名學(xué)生(其中女生900人).該校為了解高一年級學(xué)生對“1”的選課情況,采用分層抽樣的方法抽取了200名學(xué)生進行問卷調(diào)查,下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表.
性別 | 選擇物理 | 選擇歷史 | 總計 |
男生 | ________ | 50 | |
女生 | 30 | ________ | |
總計 | ________ | ________ | 200 |
(1)求,的值;
(2)請你依據(jù)該列聯(lián)表判斷是否有99.5%的把握認為選擇科目與性別有關(guān)?說明你的理由.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001/span> | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】武漢市掀起了轟轟烈烈的“十日大會戰(zhàn)”,要在10天之內(nèi),對武漢市民做一次全員檢測,徹底摸清武漢市的詳細情況.某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗方式:
方案①:將每個人的血分別化驗,這時需要驗1000次.
方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血就只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗這樣,該組個人的血總共需要化驗次. 假設(shè)此次檢驗中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨立.
(1)設(shè)方案②中,某組個人中每個人的血化驗次數(shù)為,求的分布列;
(2)設(shè). 試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以減少多少次?(最后結(jié)果四舍五入保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,過點作互相垂直的兩條直線分別交橢圓于點(與不重合).
(1)證明:直線過定點;
(2)若以點為圓心的圓與直線相切,且切點為線段的中點,求四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com