【題目】已知函數(shù),其導(dǎo)函數(shù)為

當(dāng)時,若函數(shù)R上有且只有一個零點,求實數(shù)a的取值范圍;

設(shè),點是曲線上的一個定點,是否存在實數(shù)使得成立?并證明你的結(jié)論.

【答案】(1);(2)見解析.

【解析】

當(dāng),,由題意,令,則,解得,由此能求出時,R上有且只有一個零點

,得,假設(shè)存在,則,利用導(dǎo)數(shù)性質(zhì)推導(dǎo)出不存在實數(shù)使得成立。

當(dāng)時,,,

,

由題意得,即,

,則,解得,

當(dāng)時,,單調(diào)弟增,

當(dāng)時,,單調(diào)遞減,

當(dāng)時,,當(dāng)時,

時,R上有且只有一個零點.

,得,

假設(shè)存在

則有,

,

,

,

,,,

,則,

兩邊同時除以,得,即,

,

上單調(diào)遞增,且

對于恒成立,即對于恒成立,

上單調(diào)遞增,,

對于恒成立,

不成立,

同理,時,也不成立

不存在實數(shù)使得成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-5:不等式選講】

已知函數(shù)

(Ⅰ)求不等式

(Ⅱ)若的圖像與直線圍成圖形的面積不小于14,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是橢圓C上的一點,橢圓C的離心率與雙曲線的離心率互為倒數(shù),斜率為直線l交橢圓CB,D兩點,且A、B、D三點互不重合.

1)求橢圓C的方程;

2)若分別為直線AB,AD的斜率,求證:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在以為焦點的雙曲線上,過軸的垂線,垂足為,若四邊形為菱形,則該雙曲線的離心率為( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點F是拋物線的焦點,點在拋物線

求橢圓的方程;

已知斜率為k的直線l交橢圓A,B兩點,,直線AMBM的斜率乘積為,若在橢圓上存在點N,使,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,直線與橢圓相交于、兩點橢圓的上頂點與焦點關(guān)于直線對稱,且.斜率為的直線與線段相交于點,與橢圓相交于兩點.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在貫徹中共中央國務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位定點幫扶甲、乙兩個村各50戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo),制成下圖其中”表示甲村貧困戶,“”表示乙村貧困戶.

,則認(rèn)定該戶為“絕對貧困戶”,若,則認(rèn)定該戶為“相對貧困戶”,若,則認(rèn)定該戶為“低收入戶”;

,則認(rèn)定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.

1)從甲村50戶中隨機選出一戶,求該戶為“今年不能脫貧的絕對貧困戶的概率;

2)若從所有“今年不能脫貧的非絕對貧困戶”中選3戶,用表示所選3戶中乙村的戶數(shù),求的分布列和數(shù)學(xué)期望;

3)試比較這100戶中,甲、乙兩村指標(biāo)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】人類的四種血型與基因類型的對應(yīng)為:O型的基因類型為ii,A型的基因類型為aiaa,B型的基因類型為bibb,AB型的基因類型為ab,其中ab是顯性基因,i是隱性基因.一對夫妻的血型一個是A型,一個是B型,請確定他們的子女的血型是0,A,BAB型的概率,并填寫下表:

父母血型的基因類型組合

子女血型的概率

O

A

B

AB

ai×bi

ai×bb

0

0

aa×bi

0

0

aa×bb

0

0

0

1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車行業(yè)是碳排放量比較大的行業(yè)之一,歐盟從2012年開始就對二氧化碳排放量超過

型汽車進行懲罰,某檢測單位對甲、乙兩類型品牌汽車各抽取5輛進行二氧化碳排放量檢測,記錄如下(單位:):

80

110

120

140

150

100

120

100

160

經(jīng)測算發(fā)現(xiàn),乙類型品牌汽車二氧化碳排放量的平均值為.

(Ⅰ)從被檢測的5輛甲類型品牌車中任取2輛,則至少有1輛二氧化碳排放量超過的概率是多少?

(Ⅱ)求表中,并比較甲、乙兩類型品牌汽車二氧化碳排放量的穩(wěn)定性.

,其中,表示的平均數(shù),表示樣本數(shù)量,表示個體,表示方差)

查看答案和解析>>

同步練習(xí)冊答案