【題目】.

(Ⅰ)令,求的單調(diào)區(qū)間;

(Ⅱ)當時,直線的圖像有兩個交點,且,求證:.

【答案】I)詳見解析;(II)詳見解析.

【解析】

試題(I)先求得的表達式,對求導,以分類討論函數(shù)的單調(diào)區(qū)間.(II) 由(I)知,,根據(jù)單調(diào)性可知函數(shù)處取得極小值也是最小值.構(gòu)造函數(shù),利用導數(shù)求得,即有,根據(jù)單調(diào)性有.

試題解析:

解:(Ⅰ)由,

可得,

.

時, 時,,函數(shù)單調(diào)遞增;

時,時,,函數(shù)單調(diào)遞增;時,,函數(shù)單調(diào)遞減;

所以,當時,函數(shù)單調(diào)遞增區(qū)間為;當時,函數(shù)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

(Ⅱ)由(Ⅰ)知,.

時, 是增函數(shù),且當時,,單調(diào)遞減;

時,單調(diào)遞增.

所以處取得極小值,且,

所以.

.

,則,

于是在(0,1)上單調(diào)遞減,故

由此得.

因為,單調(diào)遞增,

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在棱錐P-ABCD中,PA平面ABCD,底面ABCD為直角梯形,PA=AD=DC=2,AB=4且ABCDBAD=90°.

(1)求證:BCPC;

(2)PB與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效的改良玉米品種,為農(nóng)民提供技術(shù)支.現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如右圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.

1)完成列聯(lián)表,并判斷是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關(guān)?

2①按照分層抽樣的方式,在上述樣本中,從易倒伏和抗倒伏兩組中抽取9株玉米,設取出的易倒伏矮莖玉米株數(shù)為,求的分布列(概率用組合數(shù)算式表示);

②若將頻率視為概率,從抗倒伏的玉米試驗田中再隨機抽取出50株,求取出的高莖玉米株數(shù)的數(shù)學期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,圓,定點,點是圓上一動點,線段的垂直平分線交圓的半徑于點,點的軌跡為.

(1)求曲線的方程;

(2)已知點是曲線上但不在坐標軸上的任意一點,曲線軸的焦點分別為,直線分別與軸相交于兩點,請問線段長之積是否為定值?如果還請求出定值,如果不是請說明理由;

(3)在(2)的條件下,若點坐標為(-1,0),設過點的直線相交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個生產(chǎn)公司投資A生產(chǎn)線500萬元,每萬元可創(chuàng)造利潤萬元,該公司通過引進先進技術(shù),在生產(chǎn)線A投資減少了x萬元,且每萬元的利潤提高了;若將少用的x萬元全部投入B生產(chǎn)線,每萬元創(chuàng)造的利潤為萬元,其中

若技術(shù)改進后A生產(chǎn)線的利潤不低于原來A生產(chǎn)線的利潤,求x的取值范圍;

若生產(chǎn)線B的利潤始終不高于技術(shù)改進后生產(chǎn)線A的利潤,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(e為自然對數(shù)的底數(shù)),

(I)記.

(i)討論函數(shù)單調(diào)性;

(ii)證明當時,恒成立

(II)令,設函數(shù)G(x)有兩個零點,求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系.曲線的極坐標方程為

(1)寫出的普通方程和的直角坐標方程;

(2)設點上,點上,求的最小值及此時點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場在五一促銷活動中,為了了解消費額在5千元以下(含5千元)的顧客的消費分布情況,從這些顧客中隨機抽取了100位顧客的消費數(shù)據(jù)(單位:千元),按,,,,分成5組,制成了如圖所示的頻率分布直方圖現(xiàn)采用分層抽樣的方法從兩組顧客中抽取4人進行滿意度調(diào)查,再從這4人中隨機抽取2人作為幸運顧客,求所抽取的2位幸運顧客都來自組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 的導函數(shù).

Ⅰ)求的極值;

Ⅱ)若時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案