【題目】如圖所示,正方體的棱長為1,線段上有兩個動點,則下列結論中正確結論的序號是__________.
①;
②直線與平面所成角的正弦值為定值;
③當為定值,則三棱錐的體積為定值;
④異面直線所成的角的余弦值為定值.
科目:高中數學 來源: 題型:
【題目】選修4-4:極坐標與參數方程
已知平面直角坐標系,以為極點, 軸的非負半軸為極軸建立極坐標系,曲線的參數方程為為參數). 點是曲線上兩點,點的極坐標分別為.
(1)寫出曲線的普通方程和極坐標方程;
(2)求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,側棱底面, 為棱中點. , , .
(I)求證: 平面.
(II)求證: 平面.
(III)在棱的上是否存在點,使得平面平面?如果存在,求此時的值;如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知有窮數列, , , , ,若數列中各項都是集合的元素,則稱該數列為數列.
對于數列,定義如下操作過程從中任取兩項, ,將的值添在的最后,然后刪除, ,這樣得到一個項的新數列,記作(約定:一個數也視作數列).若還是數列,可繼續(xù)實施操作過程.得到的新數列記作, ,如此經過次操作后得到的新數列記作.
(Ⅰ)設, , , ,請寫出的所有可能的結果.
(Ⅱ)求證:對數列實施操作過程后得到的數列仍是數列.
(Ⅲ)設, , , , , , , , , , ,求的所有可能的結果,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠的A、B、C三個不同車間生產同一產品的數量(單位:件)如下表所示.質檢人員用分層抽樣的方法從這些產品中共抽取6件樣品進行檢測.
車間 | A | B | C |
數量 | 50 | 150 | 100 |
(1)求這6件樣品中來自A、B、C各車間產品的數量;
(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件商品來自相同車間的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com