已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,其右焦點(diǎn)到直線(xiàn)x-y+2
2
=0的距離為3.
(1)求橢圓的方程;
(2)直線(xiàn)y=
3
3
x+1與橢圓交于P、N兩點(diǎn),求|PN|.
分析:(1)由題意設(shè)橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0).由題設(shè)條件知c=
2
,a=
3
.由此可知橢圓方程為
x2
3
+y2=1.
(2)設(shè)直線(xiàn)與橢圓的交點(diǎn)為P(x1,y1)、N(x2,y2),則
y=
3
3
x+1
x2
3
+y2=1
,解得直線(xiàn)與橢圓的交點(diǎn)為P(0,1),N(-
3
,0).
由此可知PN|=
(
3
)2+12
=2.
解答:解:(1)由題意設(shè)橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0).
∵b=1,又設(shè)右焦點(diǎn)F為(c,0),
|c+2
2
|
2
=3,解得c=
2
,∴a=
3

∴橢圓方程為
x2
3
+y2=1.
(2)設(shè)直線(xiàn)與橢圓的交點(diǎn)為P(x1,y1)、N(x2,y2),
y=
3
3
x+1
x2
3
+y2=1

解方程組得
x1=0
y1=1
x2=-
3
y2=0

∴直線(xiàn)與橢圓的交點(diǎn)為P(0,1),N(-
3
,0).
∴|PN|=
(
3
)2+12
=2.
點(diǎn)評(píng):本題考查直線(xiàn)和橢圓的位置關(guān)系,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線(xiàn)x-y+2
2
=0的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線(xiàn)y=kx+m(k≠0)相交于不同的兩點(diǎn)M、N.當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)頂點(diǎn)為(-2,0),焦點(diǎn)在x軸上,且離心率為
2
2

(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)斜率為1的直線(xiàn)l與橢圓交于A(yíng)、B兩點(diǎn),O為原點(diǎn),當(dāng)△AOB的面積最大時(shí),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,離心率為
6
3

(1)求橢圓的方程;
(2)設(shè)橢圓與直線(xiàn)y=kx+m(k≠0)相交于不同的兩點(diǎn)M、N,當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)頂點(diǎn)為B(0,-1),焦點(diǎn)在x軸上,若右焦點(diǎn)F到直線(xiàn)x-y+2
2
=0的距離為3.  
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)l與橢圓相交于不同的兩點(diǎn)M、N,直線(xiàn)l的斜率為k(k≠0),當(dāng)|BM|=|BN|時(shí),求直線(xiàn)l縱截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,且右焦點(diǎn)到直線(xiàn)x-y+2
2
=0的距離為3,一條斜率為k(k≠0)的直線(xiàn)l與該橢圓交于不同的兩點(diǎn)M、N,且滿(mǎn)足|
AM
|=|
AN
|
,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案