【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),
是
上的動(dòng)點(diǎn),
點(diǎn)滿足
,
點(diǎn)的軌跡為曲線
.
(Ⅰ)求的普通方程;
(Ⅱ)在以為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,直線
與
交于
,
兩點(diǎn),交
軸于點(diǎn)
,求
的值.
【答案】(1) (2)
【解析】
(I)設(shè)出點(diǎn)的坐標(biāo),根據(jù)兩個(gè)向量相等的坐標(biāo)表示,求得
點(diǎn)的坐標(biāo),消去參數(shù)后得到
的普通方程.(II)方法一:先求得直線
的直角坐標(biāo)方程,聯(lián)立直線的方程和
的方程,求得交點(diǎn)的坐標(biāo),利用兩點(diǎn)間的距離公式求得
的長(zhǎng),進(jìn)而求得
的值.方法二:先求出直線
的參數(shù)方程,將參數(shù)方程代入
的方程,利用直線參數(shù)的幾何意義,求得
的值.
(Ⅰ)設(shè),
.
∵∴
,消去
得
的普通方程為
.
(Ⅱ)法一:直線的極坐標(biāo)方程,即
.
∵,
,得直線
的直角坐標(biāo)方程為
.
∴,由
得
,∴
,
.
∴,
,∴
.
法二:直線的極坐標(biāo)方程,即
.
∵,
,得直線
的直角坐標(biāo)方程為
.
∴.∵直線
的傾斜角為
,
∴可得直線的參數(shù)方程為
(
為參數(shù)).
代入,得
,設(shè)此方程的兩個(gè)根為
,
,則
.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù),
為常數(shù),且
是函數(shù)
的一個(gè)極值點(diǎn).
(Ⅰ)求的值;
(Ⅱ)若函數(shù),
,求
的單調(diào)區(qū)間;
(Ⅲ) 過(guò)點(diǎn)可作曲線
的三條切線,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天文學(xué)中為了衡量星星的明暗程度,古希臘天文學(xué)家喜帕恰斯(,又名依巴谷)在公元前二世紀(jì)首先提出了星等這個(gè)概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計(jì)在天體光度測(cè)量中的應(yīng)用,英國(guó)天文學(xué)家普森(
)又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來(lái)描述.兩顆星的星等與亮度滿足
.其中星等為
的星的亮度為
.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的
倍,則與
最接近的是(當(dāng)
較小時(shí),
)
A.1.24B.1.25C.1.26D.1.27
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)圓錐形量杯的高為厘米,其母線與軸的夾角為
.
(1)求該量杯的側(cè)面積;
(2)若要在該圓錐形量杯的一條母線上,刻上刻度,表示液面到達(dá)這個(gè)刻度時(shí),量杯里的液體的體積是多少.當(dāng)液體體積是
立方厘米時(shí),刻度的位置
與頂點(diǎn)
之間的距離是多少厘米(精確到
厘米)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于任意給定的無(wú)理數(shù)及實(shí)數(shù)
,圓周
上的有理點(diǎn)的個(gè)數(shù)情況是()
A. 至多一個(gè) B. 至多兩個(gè) C. 至少兩個(gè),個(gè)數(shù)有限 D. 無(wú)數(shù)多個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若正四面體PQMN的頂點(diǎn)分別在給定的四面體ABCD的面上,每個(gè)面上恰有一個(gè)點(diǎn),那么,( ).
A. 當(dāng)四面體ABCD是正四面體時(shí),正四面體PQMN有無(wú)數(shù)個(gè),否則,正四面體PQMN只有一個(gè)
B. 當(dāng)四面體ABCD是正四面體時(shí),正四面體PQMN有無(wú)數(shù)個(gè),否則,正四面體PQMN不存在
C. 當(dāng)四面體ABCD的三組對(duì)棱分別相等時(shí),正四面體PQMN有無(wú)數(shù)個(gè),否則,正四面體PQMN只有一個(gè)
D. 對(duì)任何四面體ABCD,正四面體PQMN都有無(wú)數(shù)個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2+cx+d在x=1處取極小值,x=3處取極大值,且函數(shù)圖象在(2,f(2))處的切線與直線x-5y=0平行.
(1)求實(shí)數(shù)abc的值;
(2)設(shè)函數(shù)f(x)=0有三個(gè)不相等的實(shí)數(shù)根,求d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購(gòu),網(wǎng)絡(luò)外賣(mài)也開(kāi)始成為不少人日常生活中不可或缺的一部分.某市一調(diào)查機(jī)構(gòu)針對(duì)該市市場(chǎng)占有率最高的甲、乙兩家網(wǎng)絡(luò)外賣(mài)企業(yè)(以下簡(jiǎn)稱外賣(mài)甲,外賣(mài)乙)的經(jīng)營(yíng)情況進(jìn)行了調(diào)查,調(diào)查結(jié)果如表:
1日 | 2日 | 3日 | 4日 | 5日 | |
外賣(mài)甲日接單 | 5 | 2 | 9 | 8 | 11 |
外賣(mài)乙日接單 | 2.2 | 2.3 | 10 | 5 | 15 |
(1)據(jù)統(tǒng)計(jì)表明,與
之間具有線性相關(guān)關(guān)系.
(�。┱�(qǐng)用相關(guān)系數(shù)加以說(shuō)明:(若
,則可認(rèn)為
與
有較強(qiáng)的線性相關(guān)關(guān)系(
值精確到0.001))
(ⅱ)經(jīng)計(jì)算求得與
之間的回歸方程為
.假定每單外賣(mài)業(yè)務(wù)企業(yè)平均能獲純利潤(rùn)3元,試預(yù)測(cè)當(dāng)外賣(mài)乙日接單量不低于2500單時(shí),外賣(mài)甲所獲取的日純利潤(rùn)的大致范圍:(
值精確到0.01)
(2)試根據(jù)表格中這五天的日接單量情況,從平均值和方差角度說(shuō)明這兩家外賣(mài)企業(yè)的經(jīng)營(yíng)狀況.
相關(guān)公式:相關(guān)系數(shù),
參考數(shù)據(jù):
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com