在直接坐標(biāo)系xOy中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為.
(1)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為(4,),判斷點P與直線L的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的漸近線方程為,左焦點為F,過的直線為,原點到直線的距離是
(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的兩點C,D,問是否存在實數(shù),使得以CD為直徑的圓經(jīng)過雙曲線的左焦點F。若存在,求出m的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的右焦點,過原點和軸不重合的直線與橢圓 相交于,兩點,且,最小值為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若圓:的切線與橢圓相交于,兩點,當(dāng),兩點橫坐標(biāo)不相等時,問:與是否垂直?若垂直,請給出證明;若不垂直,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是橢圓的左、右焦點,O為坐標(biāo)原點,點P在橢圓上,線段與y軸的交點M滿足
(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 圓O是以為直徑的圓,直線:與圓相切,并與橢圓交于不同的兩點,當(dāng),且滿足時,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的離心率為,過右焦點且斜率為的直線交橢圓于兩點,為弦的中點,為坐標(biāo)原點.
(1)求直線的斜率;
(2)求證:對于橢圓上的任意一點,都存在,使得成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面內(nèi)一動點到點的距離與點到軸的距離的差等于1.(I)求動點的軌跡的方程;(II)過點作兩條斜率存在且互相垂直的直線,設(shè)與軌跡相交于點,與軌跡相交于點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點,兩個焦點分別為,,點在橢圓 上,過點的直線與拋物線交于兩點,拋物線在點處的切線分別為,且與交于點.
(1) 求橢圓的方程;
(2) 是否存在滿足的點? 若存在,指出這樣的點有幾個(不必求出點的坐標(biāo)); 若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點為,經(jīng)過點的動直線交拋物線于點,且.
(1)求拋物線的方程;
(2)若(為坐標(biāo)原點),且點在拋物線上,求直線傾斜角;
(3)若點是拋物線的準(zhǔn)線上的一點,直線的斜率分別為.求證:
當(dāng)為定值時,也為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直角坐標(biāo)平面上,為原點,為動點,,. 過點作軸于,過作軸于點,. 記點的軌跡為曲線,
點、,過點作直線交曲線于兩個不同的點、(點在與之間).
(1)求曲線的方程;
(2)是否存在直線,使得,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com