精英家教網 > 高中數學 > 題目詳情
已知f(x),g(x)都是定義在R上的函數,且滿足以下條件:
①f(x)=ax•g(x)(a>0,a≠0));
②g(x)≠0;
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,則使logax>1成立的x的取值范圍是(  )
A、(0,
1
2
)∪(2,+∞)
B、(0,
1
2
C、(-∞,
1
2
)∪(2,+∞)
D、(2,+∞)
分析:由①及
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
解得a=2或a=
1
2
,然后利用相關對數的單調性解對數不等式
解答:解:由①及
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
可得a+
1
a
=
5
2
,變形后得2a2-5a+2=0,解得a=2或a=
1
2

當   a=2時,由   logax>1得x>2
當 a=
1
2
時,由   logax>1得0<x<
1
2

故應選A
點評:本題考查變形的能力,由解題過程可以看出,通過變形解出a的值是求解不等式的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x),g(x)都是定義在R上的函數,g(x)≠0,f(x)=axg(x),f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,在有窮數列{
f(n)
g(n)
},(n=1,2,…,10)
中任取前k項相加,則前k項和大于
15
16
的概率為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x),g(x)都是定義在R上的函數,g(x)≠0,f(x)g'(x)>f'(x)g(x),f(x)=ax•g(x),(a>0且a≠1)
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,令an=
f(n)
g(n)
,則使數列{an}的前n項和Sn超過
15
16
的最小自然數n的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x),g(x)都是定義在R上的函數,g(x)≠0,f(x)g′(x)>f′(x)g(x),且f(x)=axg(x)(a>0且a≠1,
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,對于有窮數列
f(n)
g(n)
=(n=1,2,…0)
,任取正整數k(1≤k≤10),則前k項和大于
15 
16
的概率是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x),g(x)都是定義在R上的函數,且f(x)=g(x)ax(a>0且a≠1),f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,則a的值為
1
2
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為奇函數,g(x)為偶函數,且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其單調性(無需證明).
(2)求使f(x)<0的x取值范圍.
(3)設h-1(x)是h(x)=log2x的反函數,若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案