已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=-數(shù)學(xué)公式,Sn+數(shù)學(xué)公式=an-2(n≥2,n∈N)
(1)求S2,S3,S4的值;
(2)猜想Sn的表達(dá)式;并用數(shù)學(xué)歸納法加以證明.

解:(1)S1=a1=-,∵Sn+=an-2(n≥2,n∈N),令n=2可得
,S2+=a2-2=S2-a1-2,∴=-2,∴S2=-
同理可求得 S3=-,S4=-
(2)猜想Sn =-,n∈N+,下邊用數(shù)學(xué)歸納法證明:
①當(dāng)n=2時(shí),S2=a1+a2=-,猜想成立.
②假設(shè)當(dāng)n=k時(shí)猜想成立,即SK=-
則當(dāng)n=k+1時(shí),∵Sn+=an-2,∴,
,∴=-2=,
∴SK+1=-,∴當(dāng)n=k+1時(shí),猜想仍然成立.
綜合①②可得,猜想對(duì)任意正整數(shù)都成立,即 Sn =-,n∈N+成立.
分析:(1)S1=a1,由S2+=a2-2=S2-a1 求得S2,同理求得 S3,S4
(2)猜想Sn =-,n∈N+,用數(shù)學(xué)歸納法證明,檢驗(yàn)n=1時(shí),猜想成立;假設(shè)SK=-,則當(dāng)n=k+1時(shí),由條件可得,,解出 SK+1=-,故n=k+1時(shí),猜想仍然成立.
點(diǎn)評(píng):本題考查歸納推理,用數(shù)學(xué)歸納法證明等式,證明當(dāng)n=k+1時(shí),Sn =-,n∈N+,是解題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案