【題目】如圖,菱形中,,相交于點,,.

(I)求證:平面;

(II)當直線與平面所成角的大小為時,求二面角的余弦值.

【答案】見解析

【解析】(I)菱形中,,都是正三角形,取中點,連接,因為的中點,所以在,,………………2分

因為,所以,……………………3分

又因為,所以平面………………4分

平面,所以同理,

又因為,所以平面 ………………6分

(II)以為原點,以所在直線分別為軸,軸,以過點且平行于的直線為軸建立空間直角坐標系.

.設,則,………………7分

,

設平面的法向量為,則

,令,得

,

直線與平面所成角的大小為,

,

解得(舍),.………………10分

故平面的一個法向量為,又,所以平面的一個法向量為,則,

二面角的余弦值為………………12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形, 底面 , 分別是的中點.

(1)在圖中畫出過點的平面,使得平面(須說明畫法,并給予證明);

(2)若過點的平面平面且截四棱錐所得截面的面積為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出直線的極坐標方程與曲線的直角坐標方程;

(2)已知與直線平行的直線過點,且與曲線交于兩點,試求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R,集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)UA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù)f(x)= 的定義域為[﹣a﹣2,b]
(1)求實數(shù)a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義給出證明;
(3)若實數(shù)m滿足f(m﹣1)<f(1﹣2m),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱中,底面,底面是梯形,,.

(1)求證:平面平面

(2)在線段上是否存在一點,使平面,若存在,請確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左,焦點

(1)當時,若是橢圓第一象限內(nèi)的一點,,求點的坐標;

(2)當橢圓焦點在軸上且焦距2時,若直線與橢圓相交于兩點,且,證:的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y= ﹣(x+1)0的定義域為(
A.(﹣1, ]
B.(﹣1, )??
C.(﹣∞,﹣1)∪(﹣1, ]
D.[ ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù)f(x)=lg (x≠0,x∈R)有下列命題:
①函數(shù)y=f(x)的圖象關于y軸對稱;
②在區(qū)間(﹣∞,0)上,函數(shù)y=f(x)是減函數(shù);
③函數(shù)f(x)的最小值為lg2;
④在區(qū)間(1,+∞)上,函數(shù)f(x)是增函數(shù).
其中正確命題序號為

查看答案和解析>>

同步練習冊答案