設函數(shù)f(x)的定義域為D,若存在非零實數(shù)t使得對于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),則稱f(x)為M上的“t高調函數(shù)”.如果定義域為R的函數(shù)f(x)是奇函數(shù),當x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的“4高調函數(shù)”,那么實數(shù)a的取值范圍是( 。
A、[-
2
2
,
2
2
]
B、[-1,1]
C、[-1,
2
2
]
D、[-
2
2
,1]
考點:函數(shù)奇偶性的性質
專題:新定義,函數(shù)的性質及應用
分析:根據(jù)分段函數(shù)的意義,對f(x)的解析式分段討論,可得其分段的解析式,結合其奇偶性,可得其函數(shù)的圖象;進而根據(jù)題意中高調函數(shù)的定義,可得若f(x)為R上的4高調函數(shù),則對任意x,有f(x+4)≥f(x),結合圖象分析可得4≥4a2;解可得答案.
解答: 解:根據(jù)題意,當x≥0時,f(x)=|x-a2|-a2,
則當x≥a2時,f(x)=x-2a2,
0≤x≤a2時,f(x)=-x,
由奇函數(shù)對稱性,有則當x≤-a2時,f(x)=x+2a2,
-a2≤x≤0時,f(x)=-x,
圖象如圖:易得其圖象與x軸交點為M(-2a2,0),N(2a2,0)
因此f(x)在[-a2,a2]是減函數(shù),其余區(qū)間是增函數(shù).
f(x)為R上的4高調函數(shù),則對任意x,有f(x+4)≥f(x),
故當-2a2≤x≤0時,f(x)≥0,為保證f(x+4)≥f(x),必有f(x+4)≥0;即x+4≥2a2;
有-2a2≤x≤0且x+4≥2a2可得4≥4a2
解可得:-1≤a≤1;
故選:B.
點評:本題主要考查學生的閱讀能力,很應用知識分析解決問題的能力,考查數(shù)形結合的能力,用圖解決問題的能力,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1+an=4n-3(n∈N*),若對任意的n∈N*,都有an2+an+12≥20n-15成立,則a1的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m∈R,則m=1是直線l1:(m+1)x+2y-1=0和l2:x+my+4=0平行的( 。
A、充分必要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),A1、A2是雙曲線的頂點,F(xiàn)是右焦點,點B(0,b),若在線段BF上(不含端點)存在不同的兩點Pi(i=1,2),使得△PiA1A2(i=1,2)構成以線段A1A2為斜邊的直角三角形,則雙曲線離心率e的取值范圍是( 。
A、(
2
,
5
+1
2
B、(
5
+1
2
,+∞)
C、(1,
5
+1
2
D、(
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

向量
a
=(-3,4),
AB
=-2
a
,若A點的坐標是(1,2),則B點的坐標為( 。
A、(-7,8)
B、(7,-6)
C、(-5,10)
D、(9,-4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=i(i+1),在復平面內,與復數(shù)z對應的點Z所在的象限是(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設平面向量
am
=(m,1),
bn
=(2,n),其中m,n∈{1,2,3}記“使得
am
⊥(
am
-
bn
)成立的(m,n)”為事件A,則事件A發(fā)生的概率為( 。
A、
1
3
B、
1
9
C、
1
8
D、
1
16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內角A、B、C所對的邊a、b、c成等比數(shù)列,且公比為q,則q+
sinB
sinA
的取值范圍是( 。
A、(0,+∞)
B、(0,
5
+1)
C、(
5
-1,+∞)
D、(
5
-1,
5
+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax3+3x2+3x(a≠0).
(Ⅰ)討論f(x)的單調性;
(Ⅱ)若f(x)在區(qū)間(1,2)是增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習冊答案