已知等比數(shù)列{an}的首項為a,公比為 q,其前n項和為Sn用a和q表示Sn,并證明你的結(jié)論.

 

【答案】

【解析】本試題主要考查了數(shù)列的通項公式的運用,以及等比數(shù)列的求和問題,以及運用數(shù)學(xué)歸納法加以證明,與自然數(shù)相關(guān)的命題。分為兩步驟來進行,注意n的起始值和證明要用到假設(shè)。

解:當時,,∴

時,

,∴

綜上,

時用數(shù)學(xué)歸納法證明:

①當時,,成立

②假設(shè)當時結(jié)論成立,即

則當時,

,即結(jié)論成立

由①,②知結(jié)論對所有都成立.即

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、已知等比數(shù)列{an}的前n項和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項,第3項,第2項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊答案