分析 (1)根據(jù)4x-1>0求解即可
(2)利用單調(diào)性的定義判斷即可
(3)根據(jù)(2)問結(jié)論得出最大值,最小值即可得出值域.
解答 解:(1)4x-1>0,所以x>0,所以定義域是(0,+∞),
(2)f(x)在(0,+∞)上單調(diào)增,
設(shè)0<x1<x2,則f(x1)-f(x2)=log4(4x1-1)-log4(4x2-1)=log4$\frac{{4}^{{x}_{1}}-1}{{4}^{{x}_{2}}-1}$
又∵0<x1<x2,∴1<4x1<4x2,0<4x1-1<4x2-1
∴0<$\frac{{4}^{{x}_{1}}-1}{{4}^{{x}_{2}}-1}$<1,即log4$\frac{{4}^{{x}_{1}}-1}{{4}^{{x}_{2}}-1}$<0
∴f(x1)<f(x2),f(x)在(0,+∞)上單調(diào)增.
(3)∵f(x)區(qū)間[$\frac{1}{2}$,2]上單調(diào)遞增,
∴最小值為log4(4${\;}^{\frac{1}{2}}$-1)=log41=0.
最大值為log4(42-1)=log415
∴值域為:[0,log415]
點評 本題考查復(fù)合函數(shù)的單調(diào)性,考查學(xué)生的計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{8}$ | B. | $\frac{7}{16}$ | C. | $\frac{{7\sqrt{3}}}{8}$ | D. | $\frac{{7\sqrt{3}}}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+y2+10y=0 | B. | x2+y2-10y=0 | C. | x2+y2+10x=0 | D. | x2+y2-10x=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 至多一對 | B. | 至多2對 | C. | 有無窮對 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com