設(shè)等比數(shù)列{}的前項和為,已知對任意的,點,均在函數(shù)的圖像上.

(Ⅰ)求的值;

(Ⅱ)記求數(shù)列的前項和.

 

【答案】

(Ⅰ);(Ⅱ) .

【解析】

試題分析:(Ⅰ)依題                       1分

當(dāng)時, ,                      2分

當(dāng)時, ,               4分

又因為{}為等比數(shù)列,                 5分

所以.                                         6分

(Ⅰ)另解:                              1分

當(dāng)時, ,                         2分.

當(dāng)時, ,             4分

解得                        6分

(Ⅱ)由(1)                                 7分

       9分

所以                12分

考點:本題主要考查數(shù)列的概念,等比數(shù)列的通項公式,對數(shù)函數(shù)的性質(zhì),“裂項相消法”。

點評:中檔題,確定數(shù)列的特征,一般要利用“定義法”或通過確定數(shù)列的通項公式,使問題得解。“裂項相消法”“分組求和法”“錯位相減法”是高考?嫉膬(nèi)容。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項和Sn,首項a1=1,公比q=f(λ)=
λ
1+λ
(λ≠-1,0)

(Ⅰ)證明:Sn=(1+λ)-λan
(Ⅱ)若數(shù)列{bn}滿足b1=
1
2
,bn=f(bn-1)(n∈N*,n≥2),求數(shù)列{bn}的通項公式;
(Ⅲ)若λ=1,記cn=an(
1
bn
-1)
,數(shù)列{cn}的前項和為Tn,求證:當(dāng)n≥2時,2≤Tn<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為等比數(shù)列{an}的前項和,若S3=3,S6=24,則s9=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前項n和為Sn,若對于任意的正整數(shù)n都有Sn=2an-3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列.
(2)求數(shù)列{nan}的前n項和Tn
(3)若實數(shù)t使得an<t4n恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三高考模擬卷(二)文科數(shù)學(xué)試卷(解析版) 題型:解答題

數(shù)列是首項的等比數(shù)列,且,,成等差數(shù)列.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若,設(shè)為數(shù)列的前項和,若對一切

成立,求實數(shù)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年遼寧省長春市高一下學(xué)期期末學(xué)生素質(zhì)考試數(shù)學(xué)試題(文) 題型:解答題

附加題(10分)以數(shù)列的任意相鄰兩項為坐標(biāo)的點)都在一次函數(shù)的圖象上,數(shù)列滿足

     (1)求證:數(shù)列是等比數(shù)列;

(2)設(shè)數(shù)列,的前項和分別為,且,求的值.

 

查看答案和解析>>

同步練習(xí)冊答案