如圖,在長方體 中,為中點.
(1)求證:;
(2)在棱上是否存在一點,使得平面若存在,求的長;若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:解答題
.(本題滿分12分) 如圖,PA垂直于矩形ABCD所在的平面, ,E、F分別是AB、PD的中點.
(1)求證:平面PCE 平面PCD;
(2)求三棱錐P-EFC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
已知平面//平面,AB、CD是夾在、間的兩條線段,A、C在內,B、D在內,點E、F分別在AB、CD上,且,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,長方體AC1中,AB=2,BC=AA1=1.E、F、G分別為棱DD1、D1C1、BC的中點.
(1)求證:平面平面;
(2)在底面A1D1上有一個靠近D1的四等分點H,求證: EH∥平面FGB1;
(3)求四面體EFGB1的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖,在四棱錐中,平面PAD⊥平面 ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點
求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐中,平面,底面是菱形,點O是對角線與的交點,是的中點,.
(1) 求證:平面;
(2) 平面平面;
(3) 當四棱錐的體積等于時,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)如圖,在三棱錐中,面面,是正三角形, ,.
(Ⅰ)求證:;
(Ⅱ)求平面DAB與平面ABC的夾角的余弦值;
(Ⅲ)求異面直線與所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com