【題目】設(shè)橢圓的離心率,拋物線的焦點(diǎn)恰好是橢圓的右焦點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)作兩條斜率都存在的直線,設(shè)與橢圓交于兩點(diǎn),與橢圓交于兩點(diǎn),若的等比中項(xiàng),求的最小值.

【答案】1;(2.

【解析】

1)求出拋物線的焦點(diǎn)可得,再根據(jù)離心率求得,從而可得,進(jìn)而可得結(jié)果;(2)先利用勾股定理證明,可設(shè)直線,直線,分別與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理,兩點(diǎn)間距離公式求得 ,化為,利用基本不等式求解即可.

1)依題意得橢圓C的右焦點(diǎn)F的坐標(biāo)為,即,

所以,,故橢圓C的標(biāo)準(zhǔn)方程為.

2)因?yàn)?/span>的等比中項(xiàng),

所以,即,

所以直線

又直線,的斜率均存在,

所以兩直線的斜率都不為零,

故可設(shè)直線,直線

,,,

消去x,得

所以,

同理得,

所以,

,

,

,所以

(當(dāng)且僅當(dāng)時取等號),

的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

,求的單調(diào)區(qū)間;

是否存在實(shí)數(shù)a,使的最小值為0?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用0,1,2,3,4這五個數(shù)字組成無重復(fù)數(shù)字的自然數(shù).

(1)在組成的五位數(shù)中,所有奇數(shù)的個數(shù)有多少?

(2)在組成的五位數(shù)中,數(shù)字1和3相鄰的個數(shù)有多少?

(3)在組成的五位數(shù)中,若從小到大排列,30124排第幾個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),過點(diǎn)的直線的參數(shù)方程為為參數(shù)).

(Ⅰ)求曲線的普通方程,并說明它表示什么曲線;

(Ⅱ)設(shè)曲線與直線分別交于,兩點(diǎn),若,成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)若函數(shù)上恰有2個零點(diǎn),求的取值范圍;

(3)當(dāng)時,若對任意的正整數(shù)在區(qū)間上始終存在個整數(shù)使得成立,試問:正整數(shù)是否存在最大值?若存在,求出這個最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于同一個常數(shù).若第一個單音的頻率為f,第三個單音的頻率為,則第十個單音的頻率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)在定義域上的單調(diào)性;

(2)令函數(shù),是自然對數(shù)的底數(shù),若函數(shù)有且只有一個零點(diǎn),判斷的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近期濟(jì)南公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,表示活動推出的天數(shù), 表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表所示:

根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.

(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi), (均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

(2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測活動推出第天使用掃碼支付的 人次;

(3)推廣期結(jié)束后,為更好的服務(wù)乘客,車隊隨機(jī)調(diào)查了人次的乘車支付方式,得到如下結(jié)果

已知該線路公交車票價,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)調(diào)查結(jié)果發(fā)現(xiàn):使用掃碼支付的乘客中有名乘客享受折優(yōu)惠,名乘客享受折優(yōu)惠,名乘客享受折優(yōu)惠.預(yù)計該車隊每輛車每個月有1萬人次乘車,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其他因素的條件下,按照上述收費(fèi)標(biāo)準(zhǔn),試估計該車隊一輛車一年的總收入.

參考數(shù)據(jù):

其中

參考公式

對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

同步練習(xí)冊答案