12.已知曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}x=2\sqrt{2}cosθ\\ y=3sinθ\end{array}\right.$(θ為參數(shù)),將曲線C1上每一點的橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,縱坐標(biāo)縮短為原來的$\frac{1}{3}$倍,得到曲線C,直線l的參數(shù)方程為:$\left\{\begin{array}{l}x=2+2\sqrt{3}t\\ y=1+2t\end{array}\right.$(t為參數(shù)),直線l與曲線C交于A,B兩點.
(1)寫出曲線C和直線l在直角坐標(biāo)系下的普通方程;
(2)若P點的坐標(biāo)為P(2,1),求|PA|•|PB|的值.

分析 (1)利用平方關(guān)系,和加減消元法,消參可得曲線C和直線l在直角坐標(biāo)系下的普通方程;
(2)若P點的坐標(biāo)為P(2,1),則直線l的參數(shù)方程化為標(biāo)準(zhǔn)方程:$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{3}}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}}\right.$(t為參數(shù)),代入橢圓方程,由韋達定理,可得答案.

解答 解:(1)由題意得曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.⇒\left\{\begin{array}{l}\frac{x}{{\sqrt{2}}}=cosθ\;①\\ y=sinθ\;②\end{array}\right.$,①2+②2,得$\frac{x^2}{2}+{y^2}=1$,
所以曲線C的標(biāo)準(zhǔn)方程為:$\frac{x^2}{2}+{y^2}=1$…..…(3分)
直線l的標(biāo)準(zhǔn)方程為:$x-\sqrt{3}y-2+\sqrt{3}=0$…..…(5分)
(2)將直線l的參數(shù)方程化為標(biāo)準(zhǔn)方程:$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{3}}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}}\right.$(t為參數(shù)),…(7分)
代入橢圓方程得:$5{t^2}+8(\sqrt{3}+1)t+16=0$,
所以$|{PA}|•|{PB}|=|{{t_1}{t_2}}|=\frac{16}{5}$….…(10分)

點評 本題考查的知識點是參數(shù)方程與普通方程的互化,直線與橢圓的綜合應(yīng)用,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=(|x-a2|+|x-2a2|-3a2),若對于任意x∈R,都有f(x-2)≤f(x),則實數(shù)a的取值范圍是(  )
A.[-$\frac{1}{6}$,$\frac{1}{6}$]B.[-$\frac{\sqrt{6}}{6}$,$\frac{\sqrt{6}}{6}$]C.[-$\frac{1}{3}$,$\frac{1}{3}$]D.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.lg$\frac{{4\sqrt{2}}}{7}-lg\frac{2}{3}+lg7\sqrt{5}$=lg6+$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若點$(sin\frac{5π}{6},cos\frac{8π}{3})$在角α的終邊上,則sinα的值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,△ABC三個內(nèi)角A,B,C所對的邊分別為a,b,c,已知C=$\frac{π}{3}$,$\frac{a}$=$\frac{cosB}{cosA}$,在△ABC內(nèi)取一點P,使得PB=3,過點P分別作直線BA,BC的垂線PM,PN,垂足分別是M,N,則|PM|+|PN|的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=kax(k為常數(shù),a>0且a≠1)的圖象過點A(0,1)和點B(2,16).
(1)求函數(shù)的解析式;
(2)g(x)=b+$\frac{1}{f(x)+1}$是奇函數(shù),求常數(shù)b的值;
(3)對任意的x1,x2∈R且x1≠x2,試比較$f(\frac{{{x_1}+{x_2}}}{2})$與$\frac{{f({x_1})+f({x_2})}}{2}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a>0且a≠1,求滿足loga$\frac{3}{5}$<1的a的取值范圍(0,$\frac{3}{5}$)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下列各式:
(1)${[{(-\sqrt{2})^2}]^{\frac{1}{2}}}=\sqrt{2}$;
(2)已知${log_a}\frac{2}{3}<1$,則$a>\frac{2}{3}$;
(3)函數(shù)y=2x的圖象與函數(shù)y=2-x的圖象關(guān)于y軸對稱;
(4)函數(shù)$f(x)=\sqrt{m{x^2}+mx+1}$的定義域是R,則m的取值范圍是0≤m≤4;
(5)函數(shù)y=ln(-x2+x)的遞增區(qū)間為(-∞,$\frac{1}{2}$].
有(1)(3)(4).(把你認(rèn)為正確的序號全部寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{2x-1}{x}$.
①判斷函數(shù)f(x)的奇偶性;
②判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性,并證明;
③若x∈[3,5],求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案