【題目】已知在某市的一次學(xué)情檢測中,學(xué)生的數(shù)學(xué)成績X服從正態(tài)分布N(105,100),其中90分為及格線,120分為優(yōu)秀線,下列說法正確的是(

附:隨機(jī)變量服從正態(tài)分布N(,),則P()0.6826,P()0.9544P()0.9974.

A.該市學(xué)生數(shù)學(xué)成績的期望為105

B.該市學(xué)生數(shù)學(xué)成績的標(biāo)準(zhǔn)差為100

C.該市學(xué)生數(shù)學(xué)成績及格率超過0.99

D.該市學(xué)生數(shù)學(xué)成績不及格的人數(shù)和優(yōu)秀的人數(shù)大致相等

【答案】AD

【解析】

根據(jù)正態(tài)分布的知識(shí)對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).

依題意,.

期望為105,選項(xiàng)A正確;方差為100,標(biāo)準(zhǔn)差為10,選項(xiàng)B錯(cuò)誤;

該市85分以上占,故C錯(cuò)誤;

由于,根據(jù)對(duì)稱性可判斷選項(xiàng)D正確.

故選:AD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)R上的奇函數(shù),當(dāng)時(shí),,則函數(shù)上的所有零點(diǎn)之和為(

A.0B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場更新技術(shù)培育了一批新型的“盆栽果樹”,這種“盆栽果樹”將一改陸地栽植果樹只在秋季結(jié)果的特性,能夠一年四季都有花、四季都結(jié)果.現(xiàn)為了了解果樹的結(jié)果情況,從該批果樹中隨機(jī)抽取了容量為120的樣本,測量這些果樹的高度(單位:厘米),經(jīng)統(tǒng)計(jì)將所有數(shù)據(jù)分組后得到如圖所示的頻率分布直方圖.

1)求;

2)已知所抽取的樣本來自兩個(gè)實(shí)驗(yàn)基地,規(guī)定高度不低于40厘米的果樹為“優(yōu)品盆栽”,

i)請(qǐng)將圖中列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“優(yōu)品盆栽”與兩個(gè)實(shí)驗(yàn)基地有關(guān)?

優(yōu)品

非優(yōu)品

合計(jì)

基地

60

基地

20

合計(jì)

ii)用樣本數(shù)據(jù)來估計(jì)這批果樹的生長情況,若從該農(nóng)場培育的這批“盆栽果樹”中隨機(jī)抽取4棵,求其中“優(yōu)品盆栽”的棵樹的分布列和數(shù)學(xué)期望.

附:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線的焦點(diǎn),恰好又是雙曲線的右焦點(diǎn),雙曲線過點(diǎn),且其離心率為

(1)求拋物線和雙曲線的標(biāo)準(zhǔn)方程;

(2)已知直線過點(diǎn),且與拋物線交于兩點(diǎn),以為直徑作圓,設(shè)圓軸交于點(diǎn),,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖象為C,如下結(jié)論中正確的是(

①圖象C關(guān)于直線對(duì)稱;②函數(shù)在區(qū)間內(nèi)是增函數(shù);

③圖象C關(guān)于點(diǎn)對(duì)稱;④由的圖象向右平移個(gè)單位長度可以得到圖象C

A.①③B.②③C.①②③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】常州別稱龍城,是一座有著3200多年歷史的文化古城.常州既有春秋淹城、天寧寺等名勝古跡,又有中華恐龍園、嬉戲谷等游樂景點(diǎn),每年都有大量游客來常州參觀旅游.為合理配置旅游資源,管理部門對(duì)首次來中華恐龍園游覽的游客進(jìn)行了問卷調(diào)查,據(jù)統(tǒng)計(jì),其中的人計(jì)劃只游覽中華恐龍園,另外的人計(jì)劃既游覽中華恐龍園又參觀天寧寺.每位游客若只游覽中華恐龍園,得1分;若既游覽中華恐龍園又參觀天寧寺,得2.假設(shè)每位首次來中華恐龍園游覽的游客均按照計(jì)劃進(jìn)行,且是否參觀天寧寺相互獨(dú)立,視頻率為概率.

1)有2名首次來中華恐龍園游覽的游客是拼車到常州的,求2名游客都是既游覽中華恐龍園又參觀天寧寺的概率;

2)從首次來中華恐龍園游覽的游客中隨機(jī)抽取3人,記這3人的合計(jì)得分為X,求X的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線的斜率為1的切線方程;

(Ⅱ)當(dāng)時(shí),求證:;

(Ⅲ)設(shè),記在區(qū)間上的最大值為Ma),當(dāng)Ma)最小時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,AB=AD=2BC=2,BCADABAD,△PBD為正三角形.且PA=2

1)證明:平面PAB⊥平面PBC;

2)若點(diǎn)P到底面ABCD的距離為2E是線段PD上一點(diǎn),且PB∥平面ACE,求四面體A-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;

2)若直線與曲線相交于、兩點(diǎn),求的面積.

查看答案和解析>>

同步練習(xí)冊答案