集合M=x|x=+kZ,N=x|x=+,kZ,則( )

  AM=N            BMN

  CMN            DMN=

答案:C
提示:

當(dāng)k=2n(nZ)時(shí),,當(dāng)k=2n-1(nZ)時(shí),

,可見(jiàn)N中包括了M的全部元素,且N中有不屬于M的元素,因此MN,即選C


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合M={x|-x≤x<3},N={x|-1≤x≤4},則M∩N等于( 。
A、{x|-4≤x≤-2}B、{x|-1≤x≤3}C、{x|0≤x<3}D、{x|3<x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M是滿足下列條件的函數(shù)f(x)的集合:①f(x)的定義域?yàn)镽;②存在a<b,使f(x)在(-∞,a),(b,+∞)上分別單調(diào)遞增,在(a,b)上單調(diào)遞減.
(I)設(shè)f1(x)=x•|x-2|,f2(x)=x3-3x2+3x,判斷f1(x),f2(x)是否在集合M中,并說(shuō)明理由;
(II)求證:對(duì)任意的實(shí)數(shù)t,f(x)=
-x+tx2+1
都在集合M中;
(Ⅲ)是否存在可導(dǎo)函數(shù)f(x),使得f(x)與g(x)=f'(x)-x都在集合M中,并且有相同的單調(diào)區(qū)間?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合M={x|x-2>0},N={x|log2(x-1)<1},則M∩N=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x||x|<2},N={x|
x+1
x-3
<0}
,則集合M∩(CRN)等于( 。
A、{x|-2<x≤-1}
B、{x|x>3}
C、{x|-1<x<2}
D、{x|-2<x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合M={x|x-2>0},N={x|log2(x-2)<1},則M∩N=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案