過點(diǎn)(-4,0)作直線L與圓x2+y2+2x-4y-20=0交于A、B兩點(diǎn),如果|AB|=8,則L的方程為   
【答案】分析:先求出圓心和半徑,由弦長公式求出圓心到直線的距離為d的值,檢驗(yàn)直線ι的斜率不存在時(shí),滿足條件;
當(dāng)直線ι的斜率存在時(shí),設(shè)出直線ι的方程,由圓心到直線的距離等于3解方程求得斜率k,進(jìn)而得到直線ι的方程.
解答:解:圓x2+y2+2x-4y-20=0 即 (x+1)2+(y-2)2=25,
∴圓心(-1,2),半徑等于5,設(shè)圓心到直線的距離為d,
由弦長公式得8=2∴d=3. 當(dāng)直線L的斜率不存在時(shí),方程為x=-4,滿足條件.
當(dāng)直線L的斜率存在時(shí),設(shè)斜率等于 k,直線L的方程為y-0=k(x+4),即kx-y+4k=0,
由圓心到直線的距離等于3得 =3,
∴k=-,直線L的方程為5x+12y+20=0.
綜上,滿足條件的直線L的方程為 x=-4或5x+12y+20=0,
故答案為:x=-4或5x+12y+20=0.
點(diǎn)評:本題考查利用直線和圓的位置關(guān)系求直線方程的方法,體現(xiàn)了分類討論的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點(diǎn),且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省淮南市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山西省晉商四校高二下學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知直三棱柱中, , , 的交點(diǎn), 若.

(1)求的長;  (2)求點(diǎn)到平面的距離;

(3)求二面角的平面角的正弦值的大小.

【解析】本試題主要考查了距離和角的求解運(yùn)用。第一問中,利用ACCA為正方形, AC=3

第二問中,利用面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

(2)在面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD= … 8分

(3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB

CHE為二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h(huán))  ……… 4分

·=0,  h=3

(2)設(shè)平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

點(diǎn)A到平面ABC的距離為H=||=……… 8分

(3) 設(shè)平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小滿足cos== ………  11分

二面角C-AB-C的平面角的正弦大小為

 

查看答案和解析>>

同步練習(xí)冊答案