不等式3 x 2-8>3 -2x的解為
{x|x>2或x<-4}
{x|x>2或x<-4}
分析:利用指數(shù)函數(shù)的單調(diào)性可得x2-8>-2x,解不等式可求
解答:解:∵3 x 2-8>3 -2x
∴x2-8>-2x即x2+2x-8>0
解不等式可得,x>2或x<-4
故答案為{x|x>2或x<-4}
點(diǎn)評(píng):本題主要利用指數(shù)函數(shù)的單調(diào)性求解不等式,及二次不等式的求解,屬于基礎(chǔ)試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若函數(shù)f(x)=
x3+2x-3
x-1
,(x>1)
ax+1,(x≤1)
在點(diǎn)x=1處連續(xù),則a=4;
②若不等式|x+
1
x
|>|a-2|+1
對(duì)于一切非零實(shí)數(shù)x均成立,則實(shí)數(shù)a的取值范圍是1<a<3;
③不等式(x-2)|x2-2x-8|≥0的解集是x|x≥2.
其中正確的命題有
 
.(將所有真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(I)|2x-1|+x+3≤5;
(II)|x+10|-|x-2|≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•靜安區(qū)一模)(理)設(shè)滿足不等式
a(x-2)x+3
<2
的解集為A,且1∉A,則實(shí)數(shù)a的取值范圍是
(-∞,-8]
(-∞,-8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

  單調(diào)函數(shù)f(x)滿足f(x + y)= f(x) + f(y),且f(1)=2,其定義域?yàn)镽。   

 (1)求f(0)、f(2)、f(4)的值;    (2)解不等式f(x2 + 3 x) < 8。

查看答案和解析>>

同步練習(xí)冊(cè)答案