火車站北偏東方向的處有一電視塔,火車站正東方向的處有一小汽車,測得距離為31,該小汽車從處以60公里每小時的速度前往火車站,20分鐘后到達處,測得離電視塔21,問小汽車到火車站還需多長時間?

15分鐘。

解析試題分析:分析已知可知,,計算可得。在中用余弦定理可得的值,根據(jù)誘導公式可得,根據(jù)同角三角函數(shù)關系式可得的值(三角形中角的正弦值恒為正)。用誘導公式可將轉化為用兩角和差公式展開可求其值。根據(jù)正弦定理可得的值,再根據(jù)時間等于路程除以速度可得所需時間。

解 由條件,設,
中,由余弦定理得

=
中,由正弦定理,得( )
(分鐘)
答到火車站還需15分鐘.
考點:1誘導公式、同角三角函數(shù)關系式、兩角和差公式;2正弦定理;3余弦定理。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

四邊形的內角互補,
(1)求;
(2)求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

己知A、B、C分別為△ABC的三邊a、b、c所對的角,向量
,且.
(1)求角C的大。
(2)若sinA,sinC,sinB成等差數(shù)列,且,求邊c的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量m=(sin ,1),n=(cos ,cos2).記f(x)=m·n.
(1)若f(α)=,求cos(-α)的值;
(2)在△ABC中,角A、B、C的對邊分別是a、b、c,且滿足(2a-c)cos B=bcos C,若f(A)=,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,角的對邊分別為,已知.
(1)求證:成等差數(shù)列;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在△中,是角對應的邊,向量,,且
(1)求角
(2)函數(shù)的相鄰兩個極值的橫坐標分別為、,求的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,角所對的邊分別為,且 成等差數(shù)列.
(1)求角的大;
(2)若,求邊上中線長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

△ABC中,角A,B,C的對邊分別為a,b,c,已知sinAsinB+sinBsinC+cos2B=1.
(1)求證:a,b,c成等差數(shù)列;(2)若C=,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2013•重慶)在△ABC中,內角A、B、C的對邊分別是a、b、c,且a2=b2+c2+bc.
(1)求A;
(2)設a=,S為△ABC的面積,求S+3cosBcosC的最大值,并指出此時B的最值.

查看答案和解析>>

同步練習冊答案