某鄉(xiāng)為提高當(dāng)?shù)厝罕姷纳钏剑烧顿Y興建了甲、乙兩個(gè)企業(yè),1997年該鄉(xiāng)從甲企業(yè)獲得利潤320萬元,從乙企業(yè)獲得利潤720萬元.以后每年上交的利潤是:甲企業(yè)以1.5倍的速度遞增,而乙企業(yè)則為上一年利潤的.根據(jù)測算,該鄉(xiāng)從兩個(gè)企業(yè)獲得的利潤達(dá)到2000萬元可以解決溫飽問題,達(dá)到8100萬元可以達(dá)到小康水平.
(1)若以1997年為第一年,則該鄉(xiāng)從上述兩個(gè)企業(yè)獲得利潤最少的一年是那一年,該年還需要籌集多少萬元才能解決溫飽問題?
(2)試估算2005年底該鄉(xiāng)能否達(dá)到小康水平?為什么?
【答案】分析:(1)以1997年為第一年,根據(jù)甲企業(yè)以1.5倍的速度遞增,而乙企業(yè)則為上一年利潤的,則第n年該鄉(xiāng)從這兩家企業(yè)獲得的利潤為,利用基本不等式可求兩個(gè)企業(yè)獲得利潤最少的一年,從而可求還需另籌資金1040萬元可解決溫飽問題.
(2)2005年為第9年,該年可從兩個(gè)企業(yè)獲得利潤,利用基本不等式可知y9>8100
,從而可知該鄉(xiāng)到2005年底可以達(dá)到小康水平.
解答:解:(1)若以1997年為第一年,則
∵甲企業(yè)以1.5倍的速度遞增,而乙企業(yè)則為上一年利潤的
∴第n年該鄉(xiāng)從這兩家企業(yè)獲得的利潤為
∴yn==2×80×6=960
當(dāng)且僅當(dāng),即n=2時(shí),等號成立,
所以第二年(1998年)上交利潤最少,利潤為960萬元.
由2000-960=1040(萬元)知:還需另籌資金1040萬元可解決溫飽問題.
(2)2005年為第9年,該年可從兩個(gè)企業(yè)獲得利潤>20×81×5=8100
所以該鄉(xiāng)到2005年底可以達(dá)到小康水平.
點(diǎn)評:本題考查的重點(diǎn)是解決實(shí)際問題,解題的關(guān)鍵是構(gòu)建函數(shù)模型,利用基本不等式解決最值問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某鄉(xiāng)為提高當(dāng)?shù)厝罕姷纳钏剑烧顿Y興建了甲、乙兩個(gè)企業(yè),1997年該鄉(xiāng)從甲企業(yè)獲得利潤320萬元,從乙企業(yè)獲得利潤720萬元.以后每年上交的利潤是:甲企業(yè)以1.5倍的速度遞增,而乙企業(yè)則為上一年利潤的
23
.根據(jù)測算,該鄉(xiāng)從兩個(gè)企業(yè)獲得的利潤達(dá)到2000萬元可以解決溫飽問題,達(dá)到8100萬元可以達(dá)到小康水平.
(1)若以1997年為第一年,則該鄉(xiāng)從上述兩個(gè)企業(yè)獲得利潤最少的一年是那一年,該年還需要籌集多少萬元才能解決溫飽問題?
(2)試估算2005年底該鄉(xiāng)能否達(dá)到小康水平?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2002年全國各省市高考模擬試題匯編 題型:044

某鄉(xiāng)為提高當(dāng)?shù)厝罕姷纳钏,由政府投資興建了甲、乙兩個(gè)企業(yè),1997年該鄉(xiāng)從甲企業(yè)獲得利潤320萬元,從乙企業(yè)獲得利潤720萬元.以后每年上交的利潤是:甲企業(yè)以1.5倍的速度遞增,而乙企業(yè)則為上一年利潤的,根據(jù)測算,該鄉(xiāng)從兩個(gè)企業(yè)獲得的利潤達(dá)到2000萬元可以解決溫飽問題,達(dá)到8100萬元可以達(dá)到小康水平.

(Ⅰ)若以1997年為第一年,則該鄉(xiāng)從上述兩個(gè)企業(yè)獲得利潤最少的一年是哪一年,該年還需要籌集多少萬元才能解決溫飽問題?

(Ⅱ)試估算2005年底該鄉(xiāng)能否達(dá)到小康水平?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044

某鄉(xiāng)為提高當(dāng)?shù)厝罕姷纳钏,由政府投資興建了甲、乙兩個(gè)企業(yè),1997年該鄉(xiāng)從甲企業(yè)獲得利潤320萬元,從乙企業(yè)獲得利潤720萬元.以后每年上交的利潤是:甲企業(yè)以1.5倍的速度遞增,而乙企業(yè)則為上一年利潤的.根據(jù)測算,該鄉(xiāng)從兩個(gè)企業(yè)獲得的利潤達(dá)到2000萬元可以解決溫飽問題,達(dá)到8100萬元可以達(dá)到小康水平.

(1)若以1997年為第一年,則該鄉(xiāng)從上述兩個(gè)企業(yè)獲得利潤最少的一年是哪一年,該年還需要籌集多少萬元才能解決溫飽問題?

(2)試估算到2005年底該鄉(xiāng)能否達(dá)到小康水平?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某鄉(xiāng)為提高當(dāng)?shù)厝罕姷纳钏?由政府投資興建了甲、乙兩個(gè)企業(yè),2007年該鄉(xiāng)從甲企業(yè)獲得利潤320萬元,從乙企業(yè)獲得利潤720萬元.以后每年上交的利潤是:甲企業(yè)以1.5倍的速度遞增,而乙企業(yè)則為上一年利潤的.根據(jù)測算,該鄉(xiāng)從兩個(gè)企業(yè)獲得的利潤達(dá)到2000萬元可以解決溫飽問題,達(dá)到8100萬元可以達(dá)到小康水平.

(1)若以2007年為第一年,則該鄉(xiāng)從上述兩個(gè)企業(yè)獲得利潤最少的一年是那一年,該年還需要籌集多少萬元才能解決溫飽問題?

(2)試估算2015年底該鄉(xiāng)能否達(dá)到小康水平?為什么?

【解題思路】經(jīng)審題抽象出數(shù)列模型

查看答案和解析>>

同步練習(xí)冊答案