(本小題滿分12分)設(shè)函數(shù)
(1)若,
①求的值;
②存在使得不等式成立,求的最小值;
(2)當(dāng)上是單調(diào)函數(shù),求的取值范圍。
(參考數(shù)據(jù)
解:(Ⅰ)( i ),定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185645620422.gif" style="vertical-align:middle;" />
。               ………………………1分
處取得極值,
                     …………………………2分

                ……………………………4分
(ii)在,
,

當(dāng);          
;
.                ………………………6分
,


          
,

 ………………9分
(Ⅱ)當(dāng),
;
②當(dāng)時(shí),,

,
從面得;         
綜上得,.     ………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,)上單調(diào)遞減,在(,上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知x = 4是函數(shù)的一個極值點(diǎn),(,b∈R).
(Ⅰ)求的值;          
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)有3個不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知,函數(shù).
(1)當(dāng)時(shí)討論函數(shù)的單調(diào)性;
(2)當(dāng)取何值時(shí),取最小值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù).
(1)求的極值;
(2)若上恒成立,求的取值范圍;
(3)已知,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分) 已知三次函數(shù)=,為實(shí)數(shù),=1,
曲線y=在點(diǎn)(1,)處切線的斜率為-6。
(1)求函數(shù)的解析式;
(2)求函數(shù)在(-2,2)上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的減區(qū)間是
⑴試求m、n的值;
⑵求過點(diǎn)且與曲線相切的切線方程;
⑶過點(diǎn)A(1,t)是否存在與曲線相切的3條切線,若存在求實(shí)數(shù)t的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則的值為___▲___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,水波的半徑以2m/s的速度向外擴(kuò)張,當(dāng)半徑為:    這水波面的圓面積的膨脹率是:    

查看答案和解析>>

同步練習(xí)冊答案