設(shè)函數(shù)f(x)=sin(2x+
π
6
)+cos2x+
3
sinxcosx.
(1)若|x|<
π
4
,求函數(shù)f(x)的值域;
(2)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若f(
A
2
)=
5
2
,cos(A+C)=-
5
3
14
,求cosC的值.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)首先,化簡(jiǎn)函數(shù),然后,利用輔助角公式,得到f(x)=2sin(2x+
π
6
)+
1
2
,然后,借助于|x|<
π
4
,求解值域;
(2)首先,確定A的值,然后,求解cosC的值.
解答: 解:(1)∵f(x)=
3
2
sin2x+
1
2
cos2x+
1+cos2x
2
+
3
2
sin2x

=
3
sin2x+cos2x+
1
2
=2sin(2x+
π
6
)+
1
2
,
|x|<
π
4
-
π
3
<2x+
π
6
3

-
3
2
<sin(2x+
π
6
)≤1
,
1
2
-
3
<f(x)≤
5
2
,
∴f(x)的值域?yàn)?span id="xmcshrr" class="MathJye">(
1
2
-
3
,
5
2
];
(2)由f(
A
2
)=
5
2
,得sin(A+
π
6
)=1

∵A為△ABC的內(nèi)角,∴A=
π
3
,
又∵在△ABC中,cos(A+C)=-
5
3
14

sin(A+C)=
11
14
,
cosC=cos(A+C-
π
3
)=
1
2
cos(A+C)+
3
2
sin(A+C)=
3
3
14
,
∴cosC的值為
3
3
14
點(diǎn)評(píng):本題綜合考查了兩角和與差的三角函數(shù)公式,三角形的內(nèi)角性質(zhì)等知識(shí),考查比較綜合,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意兩實(shí)數(shù)a,b,定義運(yùn)算“*”:a*b=
a,a≥b
b,a<b
,關(guān)于函數(shù)f(x)=e-x*ex-1給出下列四個(gè)結(jié)論:
①函數(shù)f(x)為偶函數(shù);
②函數(shù)f(x)的最小值是
1
e

③函數(shù)f(x)在(0,+∞)上單調(diào)遞增
④函數(shù)f(x)的圖象與直線y=e(x+1)有公共點(diǎn)
其中正確結(jié)論的序號(hào)是( 。
A、①③B、②③C、①④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

學(xué);虬嗉(jí)舉行活動(dòng),通常需要張貼海報(bào)進(jìn)行宣傳.現(xiàn)讓你設(shè)計(jì)一張如圖所示的豎向張貼的海報(bào),要求版心面積為128dm2,上、下兩邊各空2dm,左、右兩邊各空1dm.如何設(shè)計(jì)海報(bào)的尺寸,才能使四周空白面積最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且A=
3
,b=3,△ABC的面積為
15
3
4

(Ⅰ)求邊a的邊長(zhǎng);
(Ⅱ)求cos2B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2cos2
A-B
2
cosB-sin(A-B)sinB+cos(A+C)=-
1
2

(Ⅰ)求角A;
(Ⅱ)若a=5
3
,b=5,求角B及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
a
×(
b
+
c
),其中
a
=(sinx,-cosx),
b
=(sinx,-3cosx),
c
=(-cosx,sinx),x∈R.
(1)求函數(shù)的解析式;
(2)求當(dāng)x∈[
8
,
8
]時(shí),函數(shù)f(x)的單調(diào)性;
(3)y=cosx的圖象函數(shù)經(jīng)過(guò)怎樣的轉(zhuǎn)換得到f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求由曲線y=x2,y=
1
x
及x=2所圍成的平面圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是菱形,SA⊥平面ABCD
(Ⅰ)證明:平面SBD⊥平面SAC
(Ⅱ)當(dāng)SA=AD時(shí),且∠ABC=60°時(shí),求平面SAD與平面SBC所成角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|y=ln(1-x)},集合N={y|y=ex,x∈R},則M∩N=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案