3.某班班會(huì)準(zhǔn)備從含甲、乙的6名學(xué)生中選取4人發(fā)言,要求甲、乙兩人至少有一人參加,那么不同的發(fā)言順序有( 。
A.336種B.320種C.192種D.144種

分析 根據(jù)題意,分2種情況討論,①只有甲乙其中一人參加,②甲乙兩人都參加,由排列、組合計(jì)算可得其符合條件的情況數(shù)目,由加法原理計(jì)算可得答案.

解答 解:根據(jù)題意,分2種情況討論,
若只有甲乙其中一人參加,有C21•C43•A44=192種情況;
若甲乙兩人都參加,有C22•C42•A44=144種情況,
則不同的發(fā)言順序種數(shù)192+144=336種,
故選:A.

點(diǎn)評 本題考查排列、組合的實(shí)際應(yīng)用,正確分類是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在(x2-$\frac{1}{2{x}^{3}}$)n的展開式中含有常數(shù)項(xiàng),則正整數(shù)n的最小值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an},{bn}滿足2Sn=(an+2)bn,其中Sn是數(shù)列{an}的前n項(xiàng)和.
(1)若數(shù)列{an}是首項(xiàng)為$\frac{2}{3}$,公比為-$\frac{1}{3}$的等比數(shù)列,求數(shù)列{bn}的通項(xiàng)公式;
(2)若bn=n,a2=3,求證:數(shù)列{an}滿足an+an+2=2an+1,并寫出數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)cn=$\frac{{a}_{n}}{_{n}}$,
求證:數(shù)列{cn}中的任意一項(xiàng)總可以表示成該數(shù)列其他兩項(xiàng)之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知二次函數(shù)f(x)=ax2-4x+c的值域?yàn)閇0,+∞).
(1)判斷此函數(shù)的奇偶性,并說明理由;
(2)判斷此函數(shù)在[$\frac{2}{a}$,+∞)的單調(diào)性,并用單調(diào)性的定義證明你的結(jié)論;
(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.根據(jù)相關(guān)規(guī)定,機(jī)動(dòng)車駕駛?cè)搜褐械木凭看笥冢ǖ扔冢?0毫克/100毫升的行為屬于飲酒駕車.假設(shè)飲酒后,血液中的酒精含量為p0毫克/100毫升,經(jīng)過x個(gè)小時(shí),酒精含量降為p毫克/100毫升,且滿足關(guān)系式$p={p_0}•{e^{rx}}$(r為常數(shù)).若某人飲酒后血液中的酒精含量為89毫克/100毫升,2小時(shí)后,測得其血液中酒精含量降為61毫克/100毫升,則此人飲酒后需經(jīng)過8小時(shí)方可駕車.(精確到小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在某海濱城市附近海面有一臺風(fēng),據(jù)監(jiān)測,當(dāng)前臺風(fēng)中心位于城市A(看做一點(diǎn))的東偏南θ角方向$({cosθ=\frac{{\sqrt{2}}}{10}})$,300km的海面P處,并以20km/h的速度向西偏北45°方向移動(dòng).臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,并以10km/h的速度不斷增大.
(1)問10小時(shí)后,該臺風(fēng)是否開始侵襲城市A,并說明理由;
(2)城市A受到該臺風(fēng)侵襲的持續(xù)時(shí)間為多久?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.將邊長為10的正三角形ABC,按“斜二測”畫法在水平放置的平面上畫出為△A′B′C′,則△A′B′C′中最短邊的邊長為3.62.(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{-{x}^{2}+4x-3},1≤x≤3}\\{{2}^{x}-8,x>3}\end{array}\right.$,若F(x)=f(x)-kx在其定義域內(nèi)有3個(gè)零點(diǎn),則實(shí)數(shù)k∈(0,$\frac{\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.不等式$\frac{x+5}{{{{(x-1)}^2}}}≥1$的解集是( 。
A.[-4,1]B.[-1,4]C.[-4,1)D.[-1,1)∪(1,4]

查看答案和解析>>

同步練習(xí)冊答案