若多項式(1+x)3=a0+a1x+a2x2++a3x3,則a1+2a2+3a3=( 。
分析:把(1+x)3按照二項式定理展開,和所給的已知式作對比,求得a1,a2,a3 的值,即可求得a1+2a2+3a3 的值.
解答:解:∵(1+x)3=
C
0
3
 x0
+
C
1
3
 x1
+
C
2
3
 x2
+
C
3
3
 x3

再由已知 多項式(1+x)3=a0+a1x+a2x2++a3x3,
可得 a1=3,a2=3,a3 =1,
則a1+2a2+3a3 =3+6+3=12,
故選A
點評:本題主要考查二項式定理的應用,二項展開式的通項公式,求展開式中某項的系數(shù),屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)y=f(x)在x=
t+2
2
處取得最小值-
t2
4
(t>0),f(1)=0
(1)求y=f(x)的表達式;
(2)若任意實數(shù)x都滿足f(x)•g(x)+anx+bn=xn+1(g(x)為多項式,n∈N+),試用t表示an和bn;
(3)設圓Cn的方程(x-an2+(y-bn2=rn2,圓Cn與Cn+1外切(n=1,2,3,…),{rn}是各項都是正數(shù)的等比數(shù)列,記Sn為前n個圓的面積之和,求rn,Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一般地,我們把函數(shù)h(x)=anxn+an-1xn-1+…+a1x+a0(n∈N)稱為多項式函數(shù),其中系數(shù)a0,a1,…,an∈R.
設 f(x),g(x)為兩個多項式函數(shù),且對所有的實數(shù)x等式f[g(x)]=g[f(x)]恒成立.
(Ⅰ) 若f(x)=x2+3,g(x)=kx+b(k≠0).
①求g(x)的表達式;
②解不等式f(x)-g(x)>5.
(Ⅱ)若方程f(x)=g(x)無實數(shù)解,證明方程f[f(x)]=g[g(x)]也無實數(shù)解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)y=f(x)在x=處取得最小值-(t>0),f(1)=0.

(1)求y=f(x)的表達式;?

(2)若任意實數(shù)x都滿足等式f(x)·g(x)+anx+bn=xn+1,(g(x)為多項式,n∈N),試用t表示anbn;?

(3)設圓Cn的方程是(x-an)2+(y-bn)2=rn2,圓Cn與Cn+1外切(n=1,2,3,…),{rn}是各項都是正數(shù)的等比數(shù)列,記Sn為前n個圓的面積之和,求rn,Sn.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考數(shù)學綜合訓練試卷(06)(解析版) 題型:解答題

已知二次函數(shù)y=f(x)在x=處取得最小值-(t>0),f(1)=0
(1)求y=f(x)的表達式;
(2)若任意實數(shù)x都滿足f(x)•g(x)+anx+bn=xn+1(g(x)為多項式,n∈N+),試用t表示an和bn;
(3)設圓Cn的方程(x-an2+(y-bn2=rn2,圓Cn與Cn+1外切(n=1,2,3,…),{rn}是各項都是正數(shù)的等比數(shù)列,記Sn為前n個圓的面積之和,求rn,Sn

查看答案和解析>>

同步練習冊答案