對(duì)于函數(shù),若存在x0∈R,使方程成立,則稱(chēng)x0的不動(dòng)點(diǎn),已知函數(shù)a≠0).

(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

 

【答案】

(1) 1為的不動(dòng)點(diǎn)(2)

【解析】

試題分析:解:(1)由題得:,因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013102120014799579807/SYS201310212002361821883138_DA.files/image004.png">為不動(dòng)點(diǎn),

因此有,即       2分

所以,即3和-1為的不動(dòng)點(diǎn)。        5分

(2)因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013102120014799579807/SYS201310212002361821883138_DA.files/image001.png">恒有兩個(gè)不動(dòng)點(diǎn),

∴ 

即 (※)恒有兩個(gè)不等實(shí)數(shù)根,    8分

由題設(shè)恒成立,    10分

即對(duì)于任意b∈R,有恒成立,

所以有 ,    12分

 ∴         13分

考點(diǎn):本題考查的重點(diǎn)是函數(shù)與方程的綜合運(yùn)用,主要是考查了函數(shù)的零點(diǎn)的變形運(yùn)用問(wèn)題,屬于基礎(chǔ)題。考查同學(xué)們的等價(jià)轉(zhuǎn)換能力和分析問(wèn)題解決問(wèn)題的能力。

點(diǎn)評(píng):解題的關(guān)鍵是對(duì)新定義的理解,建立方程,將不動(dòng)點(diǎn)的問(wèn)題,轉(zhuǎn)化為結(jié)合一元二次方程中必然有兩個(gè)不等的實(shí)數(shù)根來(lái)求解參數(shù)的取值范圍。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù),若存在x0∈R,使f(x0)=x0成立,則稱(chēng)x0為f(x)的不動(dòng)點(diǎn).如果函數(shù)f(x)=有且僅有兩個(gè)不動(dòng)點(diǎn)0和2.

(Ⅰ)試求b、c滿(mǎn)足的關(guān)系式;

(Ⅱ)若c=2時(shí),各項(xiàng)不為零的數(shù)列{an}滿(mǎn)足4Sn?f()=1,求證:;

(Ⅲ)設(shè)bn=-,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:T2009-1<ln2009<T2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù),若存在x0∈R,使f(x0)=x0成立,則稱(chēng)x0f(x)的不動(dòng)點(diǎn).如果函數(shù)f(x)=有且僅有兩個(gè)不動(dòng)點(diǎn)0和2.

(Ⅰ)試求b、c滿(mǎn)足的關(guān)系式;

(Ⅱ)若c=2時(shí),各項(xiàng)不為零的數(shù)列{an}滿(mǎn)足4Sn·f()=1,

求證:;

(Ⅲ)設(shè)bn=-Tn為數(shù)列{bn}的前n項(xiàng)和,求證:T2009-1<ln2009<T2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年福建省高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)10分)注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做。對(duì)于函數(shù),若存在x0∈R,使成立,則稱(chēng)x0的不動(dòng)點(diǎn)。已知函數(shù)a≠0)。

(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

(3)(特保班做) 在(2)的條件下,若圖象上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且A、B兩點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng),求的的最小值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)10分)注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做。

對(duì)于函數(shù),若存在x0∈R,使成立,則稱(chēng)x0的不動(dòng)點(diǎn)。

已知函數(shù)a≠0)。

(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

(3)(特保班做) 在(2)的條件下,若圖象上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且A、B兩點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng),求的的最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案