對于函數(shù),若存在x0∈R,使方程成立,則稱x0的不動點(diǎn),已知函數(shù)a≠0).

(1)當(dāng)時,求函數(shù)的不動點(diǎn);

(2)若對任意實(shí)數(shù)b,函數(shù)恒有兩個相異的不動點(diǎn),求a的取值范圍;

 

【答案】

(1) 1為的不動點(diǎn)(2)

【解析】

試題分析:解:(1)由題得:,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102120014799579807/SYS201310212002361821883138_DA.files/image004.png">為不動點(diǎn),

因此有,即       2分

所以,即3和-1為的不動點(diǎn)。        5分

(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102120014799579807/SYS201310212002361821883138_DA.files/image001.png">恒有兩個不動點(diǎn),

∴ ,

即 (※)恒有兩個不等實(shí)數(shù)根,    8分

由題設(shè)恒成立,    10分

即對于任意b∈R,有恒成立,

所以有 ,    12分

 ∴         13分

考點(diǎn):本題考查的重點(diǎn)是函數(shù)與方程的綜合運(yùn)用,主要是考查了函數(shù)的零點(diǎn)的變形運(yùn)用問題,屬于基礎(chǔ)題。考查同學(xué)們的等價轉(zhuǎn)換能力和分析問題解決問題的能力。

點(diǎn)評:解題的關(guān)鍵是對新定義的理解,建立方程,將不動點(diǎn)的問題,轉(zhuǎn)化為結(jié)合一元二次方程中必然有兩個不等的實(shí)數(shù)根來求解參數(shù)的取值范圍。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點(diǎn).如果函數(shù)f(x)=有且僅有兩個不動點(diǎn)0和2.

(Ⅰ)試求b、c滿足的關(guān)系式;

(Ⅱ)若c=2時,各項(xiàng)不為零的數(shù)列{an}滿足4Sn?f()=1,求證:

(Ⅲ)設(shè)bn=-,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:T2009-1<ln2009<T2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù),若存在x0∈R,使f(x0)=x0成立,則稱x0f(x)的不動點(diǎn).如果函數(shù)f(x)=有且僅有兩個不動點(diǎn)0和2.

(Ⅰ)試求b、c滿足的關(guān)系式;

(Ⅱ)若c=2時,各項(xiàng)不為零的數(shù)列{an}滿足4Sn·f()=1,

求證:;

(Ⅲ)設(shè)bn=-,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:T2009-1<ln2009<T2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本小題滿10分)注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做。對于函數(shù),若存在x0∈R,使成立,則稱x0的不動點(diǎn)。已知函數(shù)a≠0)。

(1)當(dāng)時,求函數(shù)的不動點(diǎn);

(2)若對任意實(shí)數(shù)b,函數(shù)恒有兩個相異的不動點(diǎn),求a的取值范圍;

(3)(特保班做) 在(2)的條件下,若圖象上AB兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動點(diǎn),且A、B兩點(diǎn)關(guān)于點(diǎn)對稱,求的的最小值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿10分)注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做。

對于函數(shù),若存在x0∈R,使成立,則稱x0的不動點(diǎn)。

已知函數(shù)a≠0)。

(1)當(dāng)時,求函數(shù)的不動點(diǎn);

(2)若對任意實(shí)數(shù)b,函數(shù)恒有兩個相異的不動點(diǎn),求a的取值范圍;

(3)(特保班做) 在(2)的條件下,若圖象上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動點(diǎn),且A、B兩點(diǎn)關(guān)于點(diǎn)對稱,求的的最小值。

查看答案和解析>>

同步練習(xí)冊答案