給出下列四個(gè)命題:
①若a>b>0,c>d>0,那么
a
d
b
c
;②已知a、b、m都是正數(shù),并且a<b,則
a+m
b+m
a
b
;③若a、b∈R,則a2+b2+5≥2(2a-b);④函數(shù)f(x)=2-3x-
4
x
的最大值是2-4
3
.其中正確命題的序號(hào)是
 
把你認(rèn)為正確命題的序號(hào)都填上)
分析:對(duì)于①,利用不等式的基本性質(zhì)變形,可以證出
b
c
a
d
,故①不正確;對(duì)于②,利用作差比較的方法,得到
a+m
b+m
b
a
差的式子,再討論這個(gè)差的各個(gè)因式的正負(fù),得到
a+m
b+m
-
a
b
>0
,從而得到②正確;對(duì)于③,將a2+b2+5與2(2a-b)作差,再將這個(gè)差配方得到(a-2)2+(b-1)2,利用平方非負(fù)的性質(zhì)可得到③正確;對(duì)于④,首先證明|3x+
4
x
|≥4
3
,從而得出3x+
4
x
≤-4
3
或3x+
4
x
≥4
3
,所以函數(shù)f(x)=2-3x-
4
x
的值域?yàn)椋?∞,2-4
3
]∪[2+4
3
,+∞),函數(shù)沒有最大值,故④不正確.由此得到正確答案.
解答:解:a>b>0,c>d>0,
0<
1
c
1
d
且0<b<a
所以0<
b
c
d
a
b
c
a
d
,故①不正確;
對(duì)于②,
a+m
b+m
-
a
b
=
m(b-a)
b(b+m)

∵b>0,m>0,b+m>0,b-a>0
a+m
b+m
-
a
b
>0
,故
a+m
b+m
a
b
,②正確;
對(duì)于③,∵(a2+b2+5)-2(2a-b)=(a-2)2+(b-1)2≥0,
∴對(duì)任意a、b∈R,都有a2+b2+5≥2(2a-b),故③正確;
對(duì)于④,∵f(x)=2-3x-
4
x
=2-(3x+
4
x
),
且|3x+
4
x
|≥2
3×4
=4
3
,得3x+
4
x
≤-4
3
或3x+
4
x
≥4
3
,
∴f(x)=2-3x-
4
x
的值域?yàn)椋?∞,2-4
3
]∪[2+4
3
,+∞),
所以函數(shù)沒有最大值,故④不正確.
故答案為:②③
點(diǎn)評(píng):本題借助于判斷幾個(gè)不等式的正確與否,和判斷函數(shù)的最值為載體,著重考查了不等式的基本性質(zhì)、基本不等式和函數(shù)的值域與最值等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個(gè)兩兩不重合的平面,給出下列四個(gè)命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號(hào)有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時(shí),函數(shù)的值域?yàn)閇3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個(gè)單位得到;
④若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號(hào)是
③④⑤
③④⑤
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對(duì)角線BD折成二面角A-BD-C,點(diǎn)E,F(xiàn)分別為AC,BD的中點(diǎn),給出下列四個(gè)命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時(shí),AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號(hào)全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題,其中正確的命題的個(gè)數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對(duì)稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號(hào)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案