15.函數(shù)f(x)=2x-5x則函數(shù)f(x)的零點(diǎn)所在區(qū)間可以為(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

分析 將選項(xiàng)中各區(qū)間兩端點(diǎn)值代入f(x),滿足f(a)•f(b)<0(a,b為區(qū)間兩端點(diǎn))的為所求的答案.

解答 解:∵f(1)=-3<0,
f(2)=4-10=-6<0,
f(3)=8-15=-7<0,
f(4)=16-20=-4<0,
f(5)=32-25=7>0,
∴f(4)f(5)<0,
∴函數(shù)的零點(diǎn)在(4,5)區(qū)間上,
故選:D.

點(diǎn)評 本題考查了函數(shù)零點(diǎn)的概念與零點(diǎn)定理的應(yīng)用,屬于容易題.函數(shù)零點(diǎn)附近函數(shù)值的符號相反,這類選擇題通常采用代入排除的方法求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.把數(shù)列{3n}(n∈N*)中的數(shù)按上小下大,左小右大的原則排成如圖所示三角形表:

設(shè)a(i,j)(i,j∈N*)是位于從上往下第i行且從左往右第j個數(shù),則a(37,6)=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.由兩個簡單幾何體構(gòu)成的組合幾何體的三視圖中,正視圖和俯視圖如右圖所示,其中正視圖中等腰三角形的高為3,俯視圖中的三角形均為等腰直角三角形,半圓直徑為2,則該幾何體的體積為( 。
A.$\frac{π}{2}+1$B.π+1C.$\frac{π}{2}+2$D.π+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.橢圓$\frac{x^2}{36}+\frac{y^2}{9}=1$上有動P(m,n),則m+2n的取值范圍為[-6$\sqrt{2}$,6$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1(-3,0),F(xiàn)2(3,0),直線y=kx與橢圓交于A、B兩點(diǎn).
(Ⅰ)若三角形AF1F2的周長為4$\sqrt{3}$+6,求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若|k|>$\frac{\sqrt{2}}{4}$,且以AB為直徑的圓過橢圓的右焦點(diǎn),求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.過點(diǎn)A(-1,-2)且焦點(diǎn)與橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{9}$=1的兩個焦點(diǎn)相同的橢圓的標(biāo)準(zhǔn)方程是$\frac{{y}^{2}}{6}+\frac{{x}^{2}}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.用二分法求方程2x+x-8=0的一個實(shí)數(shù)解(精確度0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$\frac{{x}^{2}}{3{m}^{2}}$+$\frac{{y}^{2}}{5{n}^{2}}$=1和雙曲線$\frac{{x}^{2}}{2{m}^{2}}$-$\frac{{y}^{2}}{3{n}^{2}}$=1有公共的焦點(diǎn).
(1)求雙曲線的漸近線方程;
(2)直線l過右焦點(diǎn)且垂直于x軸,若直線l與雙曲線的漸近線圍成的三角形的面積為$\frac{\sqrt{3}}{4}$,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x∈Z|0<x≤3},則集合A的非空子集個數(shù)為(  )個.
A.15B.16C.7D.8

查看答案和解析>>

同步練習(xí)冊答案